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Optical hetrodyne techniques developed by Evenson led to renaissance of time and frequency precision that resulted in an

improved speed-of-light measurement of c=299,792,458m s
-1

 and a redefinition of the meter with applications to

spectroscopy and global positioning systems. This success also begs for a renaissance in conceptual precision regarding

electrodynamics, relativity and quantum theory that are so much a part of our metrology. Here we use some of Evenson’s

ideas to examine more closely the spectral and wave dynamical aspects of special relativity and quantum mechanics that

help to simplify and bring the subjects closer together. This is done by allowing light and matter to serve as their own

space-time coordinates so that the nature of momentum, mass, and energy is shown with an elegant simplicity that has

heretofore been unnecessarily hidden.
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             By enhancing the precision of time, frequency, and speed of light measurement, Kenneth M.

Evenson and co-workers
1
 set the stage for the redefinition of the meter and construction of Global

Positioning Systems (GPS) that are our worldwide electromagnetic space-time coordinate frames.

Using tiny optical versions of radio crystal sets called MIM diodes, Evenson made a chain of

increasing frequency beat notes that gave a laser frequency count for the visible region (400-750 THz).

Evenson’s achievements were noted in many places including the Guinness Book of Records, which

cited Evenson twice.
2
 Unfortunately, Lou Gehrig’s disease tragically cut his life short in 2002 before

his contribution to laser physics and metrology could be fully recognized.

The practical value of high precision optical stabilization in both continuous wave (CW) and

pulse wave (PW) lasers is cited in the 2005 Nobel Prize
3
 for Physics to R. Glauber, T. Hensch and J.

Hall
4
 and includes high-resolution spectroscopy, time-keeping, and the GPS.

5
  The third recipient, John

Hall, was a long time colleague and collaborator of Evenson in CW experiments. Later PW techniques

of Hall, Hensch, and others
6
 have increased frequency precision to better than one part in 10

15
.

Less has been said about the theoretical value of such high-precision achievements. Since

before the time of Galileo, more precise precepts accompany more precise concepts.  When we see

more clearly we gain an opportunity to think more clearly and vice-versa. Now that we are seeing over

10
12

 times more clearly, should not our conceptual clarity increase by at least ln(10
12

)? Michelson’s

interferometric precision helped establish Einstein’s leap of clarity, and so one wonders how the great

optical precision of Evenson and coworkers can also sharpen current conceptual precision.

This article seeks to improve clarity of concepts in two pillars of modern physics, special

relativity and quantum theory. The precision of optical chains used by Evenson suggests how Occam’s

razor
7
 can sharpen axioms used by Einstein. The result is a clearer chain of logic between key works of

Feynman, Planck, Einstein, Maxwell, Poincare, Fourier, Lagrange, Doppler, Newton, Galileo, and

finally going back to Euclid’s Elements. In light of this, physics becomes simpler and more powerful.

It will be shown how the developments of relativity and quantum theory in Einstein’s 1905

annus mirabilis, as well as other work that followed, can be better understood both qualitatively and

quantitatively using a spectral approach that exposes the geometry of wave interference. Such an

approach has an elegant and powerful logic that is shown to develop 1905 results in a few ruler-and-

compass steps or lines of algebra and relate them to earlier classical and later quantum mechanics.

New insight into a unification of relativity and quantum mechanics begun by Dirac suggests practical

results such as optical “Einstein-elevators” with ultra-precise coherent Compton micro-acceleration.

Unification of general relativity with quantum mechanics has been an elusive goal of string

theories for many years
8
. Such large-scale unification presumes local unification since general

relativity presumes special relativity to rule locally. A deep unification of special relativity and
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quantum theory by clearer physical logic is an important conceptual result offered by the wave-based

development described herein. This may serve as a precursor to unification with the general theory. If a

quantum world is described by wave amplitudes a b  then a unification should account for them, too.
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Sees Doppler blue shift Sees Doppler red shift

φ

φ

CW zeros precisely locate places where wave is not.

PW peaks precisely locate places where wave is.

Pulse wave (PW) train

Continuous wave (CW) train

(a) Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

(b) Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

Fig. 1 Comparison of wave archetypes and related axioms of relativity.

(a) Pulse Wave (PW) peaks locate where a wave is. Their speed is c for all observers.

(b) Continuous Wave (CW) zeros locate where it is not. Their speed is c for all colors (or observers.)
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1. Optical Axioms

Beginning relativity courses paraphrase Einstein’s light speed axiom as in Fig. 1a, “Speed of a

lightning flash is c according to passengers of any train,” or simply, “Pulse wave (PW) speed c is

invariant.” For critically thinking students, that is a show-stopper. It boggles the mind that something

of finite speed cannot ever be caught up to, indeed, cannot even begin to be caught.
9

Occam’s razor can dissect the c-axiom into a less mind-boggling form. As Evenson viewed a

frequency chain of multiple “colors” of continuous wave (CW) laser beams, he assumed that, “All

colors have speed c.”  Had Einstein imagined trains viewing a 600THz (green) laser as in Fig. 1b, his

c-axiom might be, “CW speed is c according to passengers of any train, but frequency and wavelength

vary by a Doppler effect that depends on velocity of the train,” or more simply, “All colors go c.”

A CW spectral component Occam-sliced from a PW has a color variation with observer speed

that “white” PW’s do not show. A colored wave (CW) changes color by a blue-shift if approaching its

source or a red-shift if departing. Doppler’s theory of acoustical wave frequency shift was available to

Einstein but laser technology came much later so he was unlikely to conceive of the ultra-precise 1
st
-

order Doppler sensitivity of a coherent optical CW. Coherence and interference were problems left to

Michelson and Morely fighting the incoherences of early interferometry in the privacy of their labs.

Also an optical Doppler shift depends on one relative velocity of source and observer while

acoustical Doppler depends on three absolute (or three relative) velocities involving source, observer,

and a “wind.”  The single-velocity simplicity of optical Doppler shifts is crucial for relativity.

Consider a 600THz green wave from a 600THz source. One may ask, “Is it distinguishable

from another 600THz green wave sent by a 599THz source approaching or a 601THz source departing

at just the right speed? Or, could 600THz light, seen as we approach a fixed 599THz source, differ in

speed from 600THz light seen as we depart a fixed 601Thz source? How many kinds of 600 THz light

exist?” (At first, we measure wave speed and frequency (color) but not polarization or amplitude.)

Evenson’s axiom follows if one answers, “There is only one kind of each frequency (color) and

only one speed independent of source or observer velocity.” An undesirable alternative is to have many

different kinds of each color, corresponding to many ways to make each color by tuning source up (or

down) while moving out (or in). (In fact, one color illuminating a gas, liquid, or solid may involve two

or many varieties of mode dispersion with wave speeds ranging above or below c.) Evenson’s axiom

demands that light in a vacuum be one speed for all frequency. In short, it is dispersion-free.

Then harmonic CW (Fourier) components form a pulse wave PW moving rigidly at the speed c

shared by all its hidden colors. This derives Einstein’s PW law as a theorem arising from Evenson’s

CW axiom. It also relates to appearance of distant nebulae and the night sky. If any colors were even a

fraction of a percent slower than other frequencies, they would show up thousands or millions of years
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later with less evolved images than neighboring colors. We might then enjoy a sky full of colorful

streaks but would not have the clarity of modern astronomical images.

Spectroscopic view of CW axiom

Astronomy is just one dependent of Evenson’s CW axiom. Spectroscopy is another. Laser

atomic spectra are listed by frequency  (s
-1

) or period =1/  (s) while earlier tables list atomic lines

from gratings by wavenumber  (m
-1

) or wavelength =1/  (m). The equivalence of temporal and

spatial listings is a tacit assumption of Evenson’s axiom and may be stated as follows.

c =  ·   = /   = /    = 1/(  · ) = const. (1.1)

An atomic resonance is temporal and demands a precise frequency. Sub-nanometer atomic radii

are thousands of times smaller than micron-sized wavelengths of optical transitions. Optical wave-

length then seems irrelevant. (In dipole approximations, light has no spatial dependence.)

However, optical grating diffraction demands precise spatial fit of micron-sized wavelength to

micron grating slits. Optical frequency then seems irrelevant. (Bragg or Fraunhofer laws assume no

time dependence.) Spatial geometry of a spectrometer grating, cavity, or lattice directly determines a

wavelength . Frequency   is determined indirectly from  by (1.1). That is valid only to the extent

that light speed c =  ·  is invariant throughout the spectrum (and throughout the universe.)

So spectroscopists expect an atomic laser cavity resonating at a certain atomic spectral line in

one rest frame to do so in all rest frames. Each  or   value is a proper quantity to be stamped on the

device and officially tabulated for its atoms. Passersby disagree that device output is   but instead see

a Doppler red shifted r   or blue shifted b . Yet, all can agree on whether the device is working!

Moreover, Evenson’s CW axiom demands that  and  must Doppler shift inversely one to the

other so that the product  ·  is always a constant c=299,792,458 m·s
-1

. The same applies to  and 

for which  · =1/c. Another inverse relation exists between Doppler blue and red shifts seen before

and after passing a source. This is a CW property or axiom involving time reversal.

Time reversal axiom

Atoms behave like tiny radio transmitters, or just as well, like receivers. Unlike macroscopic

radios, atoms are time-reversible in detail since they have no resistors or similarly irreversible parts.

Suppose an atom A broadcasting frequency A resonates an approaching atom B tuned to receive a blue

shifted frequency B = b A. If time runs backwards all velocity values change sign. Atom B becomes a

transmitter of its tuned frequency B = b A that is departing from atom A who is a receiver tuned to its

frequency A =  (1/b) B. Atom A sees A red-shifted from B’s frequency B by an inverse factor r=1/b.

 b=1/r (1.2)
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Phase invariance axioms

Optical CW axioms are based on deeper phase invariance principles. Elementary CW function

=A exp i(k·x- ·t) or its real part Re =A cos(k·x- ·t) has a phase angle =(k·x- ·t) that is regarded

as an invariant or proper quantity. Our rationale is that each space-time point of the wave has a phase

clock or phasor (Re , Im ) turning at angular frequency =2 · . Each phasor reading  could be

stamped or officially tabulated. Any two observers agree on  even if Doppler shifts change frequency

=2 ·  and wavevector k = 2  to new values ( ,k ) or if space x and time t also transform to (x ,t ).

 k·x-  ·t =  = k ·x - ·t (1.3)

The Lorentz-Einstein transformations for both space-time (x,t) to (x ,t ) and inverse space-time ( ,k) to

( ,k ) are derived in Sec. 2 using CW axioms (1.1-2) and a few steps of algebra or ruler-and-compass.

Historically, invariance (1.3) relates to classical Legendre contact transforms of Lagrangian L

to energy E or Hamiltonian H. Its differential with an  scale factor is Poincare’s action invariant dS.

  L = p x H (1.4a)

  d = dS = Ldt = p dx Hdt (1.4b)

Connecting (1.3) to (1.4b) requires quantum scaling relations p= k of DeBroglie and E=  of Planck.

Sec. 3 derives these relations directly from CW axioms (1.1-2) that also give exact relativistic quantum

and classical mechanical relations in a few algebraic
10

 or ruler-and-compass steps that develop elegant

and powerful wave-geometric
11

 interpretations of mass and Poincare’s invariant in Sec. 3 and Sec. 4.
12

We surmise that Einstein might have liked geometric derivation since it was a compass that

first caught his theoretical attention at an age of five.
13

 Perhaps, it might also appeal to Poincare who

also discovered relativity around the time of Einstein’s annus mirabilis. Poincare phase invariance

(1.3) underlies both CW lightspeed axiom (1.1) and time reversal axiom (1.2). Consider the =0 point.

k·x-  ·t = 0 (1.5a)

Solving gives phase velocity x/t (meters-per-second) equal by (1.1) to /  (per second)-per-(per meter).

 

x

t
=

k
= = c (1.5b)

Doppler shift ( b  and  k bk) leaves phase velocity invariant. Phase =(k·x- ·t) itself is invariant

to time reversal ( ( )  and (t t) ) and that supports (1.2), the inverse-Doppler relation b=1/r.
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(a)Pulse Wave (PW) #$��%�	�� |Ψ|
  &�$��'$
� ReΨ
�($���'$
� ImΨ

(b) CW components

Fig. 2. Pulse Wave (PW) sum of 12 Fourier  (a) PW parts: real ReΨ, imaginary ImΨ, and
       magnitude |Ψ|.      (b) CW phasor clocks plot real vs. imaginary

)*+, -.+/*,
(Zeros are diffuse)
Sharp peaks trace diamond grid

(a)Pulse Wave (PW) Addition

)*+, -.+/*,

Sharp zeros trace
                    square grid
                  (Peaks are diffuse)

(b) Continuous Wave (CW) Addition
L R

G

P

Time ct

Space
x

Left moving pulses Right moving pulses

Standing pulses

Left moving wave Right moving wave Standing wave

Space
x

Time ct

Time ct Time ct

Space
x

Space
x

Fig. 3. Wave Addition (a) 2-PW Boolean binary sum has 4 values (0,0),(0,1),(1,0),(1,1) and diamond grid
 of peak paths on a plane of zeros.    (b) 2-CW interference sum has value continuum and square grid of zeros.
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Comparing pulsed and continuous wave trains

It is instructive to contrast two opposite wave archetypes, the Pulse Wave (PW) train sketched

in Fig. 1a and the Continuous Wave (CW) train sketched in Fig. 1b. The claim is made that the CW is

the more elementary theoretical entity, indeed the most elementary entity in classical optics since it has

just one value of angular frequency =2 · , one value of wavevector k = 2 , and one amplitude A.

  

CW

k , x,t( ) = Ae
i(kx t)

= k, x,t (1.6)

The real part is the cosine wave Acos(kx t) shown in Fig. 1(b). Acronym CW fits cosine wave, as

well. If frequency  is in the visible 400-750THz range CW could also stand for colored wave.

In contrast, the PW is a less elementary wavefunction and contains N harmonic terms of CW

functions where bandwidth N is as large as possible. Fig. 2 shows an example with N=12.

   

PW

N (k , ) x,t( ) = A 1+ e
i(kx t)

+ e
i2(kx t)

+ e
i3(kx t)

+ e
iN (kx t)( ) (1.7)

An infinite-N PW is a train of Dirac (x-a)-functions each separated by fundamental wavelength

=2 /k. The  -spikes march in lockstep at light speed c= /k following Evenson’s CW axiom.

  

PW

N (k , ) x,t( )
N

A x ct n( )
n=

Delta functions have infinite frequency bandwidth and are thus impractical. Realistic PW trains apply

cutoff or tapering amplitudes an to each harmonic to restrict frequency to a finite bandwidth .

   

PW
x,t( ) = a

n
e

in(kx t)

n=0
= G x ct n( )

n=

   where:  a
n

1 for n >  (1.8)

A common choice is a Gaussian taper an = e
n /( )

2

that gives Gaussian PW functions G( ) = e ( )
2

.

PW functions (1.8) involve an unlimited number of amplitude parameters an in addition to

fundamental frequency , while a CW function has a single amplitude parameter A. Thus, theory based

on CW properties would seem to be closer to an Occam ideal of simplicity than one based on PW.

However, with regard to counter-propagating or colliding beams the PW appear in Fig. 3a to

have simpler properties than CW in Fig. 3b. PW have a simple classical Boolean OFF (0) over most of

space-time with an occasional ON (1) at a sharp pulse. On the other hand CW range gradually between

+1 and –1 over most of space-time, but have a sharp zero (0) in between crest and trough. (A PW can

be designed to show precisely where it is. A CW naturally shows precisely where it is not.)

Interference of colliding PW is wysiwye (What you see is what you expect.), but the pattern of

interference for the sum of colliding CW is subtler. PW paths in space-time (x,ct) resemble baseball

diamonds like the baseline paths in the American sport, while the CW zeros are Cartesian space-time
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squares made of horizontal spatial x-axial lines of equal times (ct=…1,2…) and vertical temporal ct-

axial lines of fixed location (x=…1,2…). PW diamonds, while deceptively simple, cover up a

complicated network of zeros around each pulse. CW squares are a simple lattice of zeros for a

standing wave that is just a factored sum of the following two equal-but-opposite colliding CW.

CW
k , +

CW
k , = A ei(kx t)

+ ei( kx t)( ) = 2Ae i t cos(kx)( ) (1.9)

The group envelope factor cos(kx)( ) is zero along ct-axial lines of position (kx/ +1/2=…0,1,2…). The

phase factor (e i t ) has zero real part along x-axial lines of simultaneous time (ct/ +1/2=…0,1,2…).

Comparing wave-zero (WZ) and pulse-peak (PP) coordinates

It is now shown how general phase and group wave zeros of 2-CW interference define a space-

time wave-zero (WZ) coordinate grid that complements a pulse peak or particle-path (PP) grid of 2-

PW trains. This helps to visualize the wave-particle duality whose history goes back to Newton’s

corpuscular view of light before wave optics of Maxwell-Young or after Planck-Einstein physics of

quanta. The visualization is done by superimposing a time-vs-space (x,t)-plot on top of its Fourier

inverse per-time-space or reciprocal space-time plot of frequency-vs-wavevector ( ,k).

The plots apply to general wave mechanics and not just optics. An example in Fig. 4 begins by

picking four random numbers, say, 1,2,4, and 4 to insert into frequency-wavevector K2= ( 2,k2)=(1,2)

of a mythical source-2 and frequency-wavevector K4= ( 4,k4)=(4,4) of another mythical source-4.

(This is not light. Slope or velocity c2= 2 /k2 =1/2 of source-2 differs from c4= 4 /k4 =1 of source-4.)

Let continuous waves (CW) from the two sources interfere in a 2-CW sum.

2 CW
= (e

i k4 x 4t( )
+ e

i k2 x 2t( )) / 2 (1.10a)

To solve for zeros of this sum we first factor it into a phase-wave eip and a group-wave cos g factor.

2 CW
= e

i
k4 +k2

2
x 4 + 2

2
t

(e
i

k4 k2

2
x 4 2

2
t

+ e
i

k4 k2

2
x 4 2

2
t

) / 2

             = e
i

k4 +k2

2
x 4 + 2

2
t

cos
k

4
k

2

2
x 4 2

2
t

             =        e
i kp x pt( )      cos     kgx        gt     ( ) eip cos g

(1.10b))

Phase factor e
ip

 has a half-sum ( ,k)-vector Kphase=(K4+K2)/2 in its argument p = kpx pt . Group

factor cos g has a half-difference ( ,k)-vector Kgroup=(K4 K2)/2 in its argument g = kgx gt .

K phase =
K4 + K2

2
=

1

2
4 + 2

k4 + k2

          =
p

kp

=
1

2

4 +1

4 + 2
=

2.5

3.0

 (1.10c)

Kgroup =
K4 K2

2
=

1

2
4 2

k4 k2

         =
g

kg

=
1

2

4 1

4 2
=

1.5

1.0

(1.10d)
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K4

K2

Wave group vectors

Frequency ω

Wave phase
 zero-paths

Kphase=(2.5, 3.0)

Kphase

Kgroup=(1.5, 1.0)

K4
K2Kgroup

Space x

Kgroup
=(K4-K2)/2

Wavevector k
Time t

(b)Per-spacetime (ω,k)

Wave
group
node-
paths

Wave phase vectors

(a) Spacetime (x,t)

Kphase
=(K4+K2)/2

PW
lattice

CW
lattice

source 2

source 4

K2=(ω2,k2)

     =(1, 2)

K4=(ω4,k4)

     =(4, 4)

Fig. 4 “Mythical” sources and their wave coordinate lattices in (a) Spacetime and (b) Per-spacetime.

CW lattices of phase-zero and group-node paths intermesh with PW lattices of pulse, packet, or “particle” paths.
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The ( ,k)-vectors Kn define paths and coordinate lattices for pulse peaks and wave zeros in Fig. 4a.

Real zeros (Re =0) have speed Vphase on Kphase paths. Group zeros (| |=0) move at Vgroup on Kgroup.

Vphase =
4 + 2

k4 + k2

=
5

6
= 0.83 (1.11a) Vgroup =

4 2

k4 k2

=
3

2
= 1.5 (1.11b)

Phase factor real part Re eip
= Re e

i kpx pt( )
= cos p  zeros on phase-zero paths where angle p is N(odd)· /2.

kpx pt = p = N p / 2 N p = ±1,±3...( ) .

Group factor cos g = cos k
g
x

g
t( )  zeros on group-zero or nodal paths where angle g is N(odd)· /2.

kgx gt = g = Ng / 2  Ng = ±1,±3...( ) .

At wave zero (WZ) lattice points (x,t) both factors are zero. That defines the lattice vectors in Fig. 4a.

     
kp p

kg g

x

t
=

p

g
= 

N p

Ng 2
      (1.12a)

Solving gives spacetime (x,t) zero-path lattice shown by the white lines in Fig. 4a. Each intersecting

lattice point is an odd-integer (N
p
, N

g
) combination of wave-vectors P = K

phase
/ 2D  and G = K

group
/ 2D .

    
x

t
=

g p

kg kp

p

g

pkg gkp

=

-p
g

kg

+g
p

kp

pkg gkp

 =
2D

( N pKgroup+NgK phase )     (1.12b)

Scaling factor 2D/  = 2( pkg gkp) /  converts (per-time, per-space) vectors Kgroup or Kphase into

(space, time) vectors P = (
t
x )

p
or G = (

t
x )

g
. (Plot units are set so 2D/  =1 or D= /2 iff D is non-zero.)

Fig. 4b is a lattice of source vectors K2 and K4 (the difference and sum of Kgroup and Kphase).

    K2 = K phase Kgroup =
2

k2

=
1

2
(1.13a)    K4 = K phase +Kgroup =

4

k4

=
4

4
(1.13b)

Phase of source-2 has speed V2 on K2 paths. Phase of source-4 has speed V4 on K4 paths.

    V2 =
2

k2

=
1

2
= 0.5 (1.14a)   V4 =

4

k4

=
1

1
= 1.0 (1.14b)

However, one can view the K2 and K4 paths in light of a classical or semi-classical viewpoint since

pulse waves (PW) are wave packets (WP) that mimic particles. Newton took a hard-line view of nature

and ascribed reality to mass particles but viewed waves as illusory. He misunderstood light when it

exhibited interference effects and complained that its particles or “corpuscles” were having “fits.”

Newtonian corpuscular views are parodied here by imagining that frequency 2 = 2 / 2

(or 4 = 4 / 2 ) is the rate at which source-2 (or 4) emits “corpuscles” of velocity V2 (or V4) so the

wavelengths 2 = 2 / k2  (or 4 = 2 / k4 ) are just inter-particle spacing of K2 (or K4) lines in Fig. 4a.
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Since wavelength 2 ( 4 ) separates K2 (K4 ) lattice lines in Fig. 4b, one can imagine them as “corpuscle

paths” on diagonals of the Kgroup(Kphase) WZ-lattice in time vs space (x,t) of Fig. 4a.

Left and right baseline vectors L and R of diamonds in Fig. 3a are special cases of K2 and K4

vectors (1.13). Diamond paths in Fig. 3a are ±45° pulse wave (PW) paths due to a multi-term CW sum

(1.17). Still, one might imagine pulses are “corpuscles” or particles, and the L(-45°) and R(+45°) paths,

like the K2 and K4 “corpuscle” paths in Fig. 4b, are baselines for some kind of “optical base runners.”

The square wave zero (WZ) grid in Fig. 3b is due to a two-term CW sum (1.9). It is a special

case of the WZ lattice in Fig. 4a due to two-term sum (1.10). Half-sum phase vector P = (L + R) / 2  and

half-difference group vector G = (L R) / 2 define a square grid of nodal lines in Fig. 3a. Vectors P and

G are a square example of the phase and group lattice vectors Kphase and Kgroup in (1.10) that define a

non-square WZ path lattice of white lines (real zeros) in Fig. 4a. (Sec.2 analyzes Fig. 3 in detail.)

Primitive vectors L and R are optical pulse wave (PW) or particle paths (PP) in Fig. 3a while in

Fig. 3b their half-sum P = (L + R) / 2  and half-difference G = (L R) / 2  define optical phase and group

wave zero (WZ) coordinate grid lines. Phase and group WZ lines are time and space axes, respectively,

forming an optical coordinate basis for our subsequent development of relativistic quantum mechanics.

This development shows wave-particle, wave-pulse, and CW-PW duality in the cells of each

CW-PW wave lattice. Each (L,R)-cell of a PW lattice has two CW vectors P or G on each diagonal,

and each (P,G)-cell of the CW lattice has one PW vector L or R on each diagonal. This is due to sum

and difference relations (1.10d) or (1.13b) between (L,R)= (K2, K4) and (P,G)=(Kphase, Kgroup).

In order that space-time (x,t)-plots could be superimposed on frequency-wavevector ( ,k)-plots

or ( , )-plots, it is necessary to switch axes for one of them. The space-time t(x)-plots in Fig. 4a follow

the convention adopted by most relativity literature for a vertical time ordinate (t-axis) and horizontal

space abscissa (x-axis) that is quite the opposite of Newtonian calculus texts that plot x(t) horizontally.

However, the frequency-wavevector k( )-plots in Fig. 4b switch axes from the usual (k) convention

so that t(x) slope due to space-time velocity x/t or x/ t (meter/second) in Fig. 4a matches that of equal

per-time-per-space wave velocity /k or / k (per-second/per-meter) in Fig.4b. (Recall (1.5))

Superimposing t(x)-plots onto k( )-plots also requires that the latter be rescaled by the scale

factor  /2D derived in (1.12b), but rescaling fails if cell-area determinant factor D is zero.

D = pkg gkp = K phase Kgroup (1.15)

Co-propagating light beams K2= ( 2,k2)=(2c,2) and K4= ( 4,k4)=(4c,4) plotted in Fig. 5b have D=0 since

all K-vectors including Kphase=( p,kp)=(3c,3) and Kgroup= ( g,kg)=(c,1) lie on one c-baseline of speed c

that has unit slope ( /ck=1). We rescale ( ,k)-plots to ( ,ck) and (x,t)-plots to (x,ct) in Fig. 5 and later.
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K4

K2
Kphase
=(K4+K2)/2

W
av

ev
ec

to
r 

ck
 κ

Frequency ω

Wave zero-paths all the same speed c

(a) Spacetime (x,ct)              (b) Per-spacetime (ω,ck)

Space x

Ti
m

e 
ct

Kgroup
=(K4-K2)/2

Infrared laser

Krypton laser

source 2

source 4

K2=(ω2,k2)

     =(2c, 2)

K4=(ω4,k4)

     =(4c, 4)

Replaced by:

Fig. 5 Co-propagating laser beams produce a collapsed wave lattice since all parts have same speed c.

For counter propagating waves shown in Fig. 3 and Fig. 6-7 below, D is not zero because two

opposite (right-left) baselines (R,L)= (K2, K4) are used to make CW square bases (P= Kphase, G= Kgroup)

with a non-zero value for area D =|GxP|, an axis-switch of (1.15). PW base vectors (R,L) are sum and

difference (P+G,P-G) of CW bases so a PW diamond area |RxL| is twice that of a CW square.

|RxL|= |(P+G) x (P-G)| =2|GxP| (1.16)

It will be shown that these areas are key geometric invariants for relativity and quantum mechanics.
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2.Wave coordinates for counter-propagating beams

Let us represent counter-propagating frequency-  laser beams by a baseball diamond in Fig. 6a

spanned by CW vectors for waves moving left-to-right (R on 1
st
 base) and right-to-left (L on 3

rd
 base).

R=K1=(ck1, 1)= (1,1)    (2.1a) L=K3=(ck3, 3)= (-1,1)  (2.1b)

Fig. 6 uses conventional (ck, )-plots for per-space-time and (x,ct)-plots for space-time. Both beams

have frequency = /2 =600THz(green), the unit scale for  and ck axes. For the L-beam, ck is - .

Phase vector P=Kphase and group vector G=Kgroup are also plotted in ( ,ck)-space in Fig. 6b.

K phase =
K1 + K3

2
=

1

2

ck1 + ck3

1 + 3

    = P =

ckp

p

=
2

1 1

1+1
=

0

1

 (2.2a)

Kgroup =
K1 K3

2
=

1

2

ck1 ck3

1 3

   = G =

ckg

g

=
2

1+1

1 1
=

1

0

(2.2b)

Phase and group velocities of counter-propagating light waves may vary widely from c. These do!

Vphase

c
=

1 + 3

ck1 + ck3

=
2

0
= (2.3a)

Vgroup

c
=

1 3

ck1 ck3

=
0

2c
= 0 (2.3b)

The extreme speeds account for the square (Cartesian) wave-zero (WZ) coordinates plotted in Fig. 6c.

As noted after Fig. 3, the group zeros or wave nodes are stationary and parallel to the time ct-axes,

while the real-zeros of the phase wave are parallel to the space x-axes. The latter instantly appear and

disappear periodically with infinite speed (2.3a) while standing wave nodes have zero speed (2.3b).

Fig. 6d shows 2-way pulse wave (2-PW) trains for comparison with the 2-CW WZ grid in Fig.

6c. As noted after Fig. 2, a PW function is an N-CW combination that suppresses its amplitude through

destructive interference between pulse peaks that owe their enhancement to constructive interference.

Colliding PW’s show no mutual interference in destroyed regions. Generally one PW is alone

on its diamond path going +c parallel to 1
st
 baseline R=K1 or going –c parallel to 3

rd
 baseline L=K3.

V
1

c
=

1

ck
1

=
1

1
= 1 (2.4a)

V
3

c
=

3

ck
3

=
1

1
= 1 (2.4b)

But wherever two PW peaks collide, each of the CW pairs will be seen trying to form a square

coordinate grid that 2-CW zeros would make by themselves. This begins to explain the tiny square

“bases” seen at the corners of the space-time “baseball diamonds” in Fig. 6d.

CW-Doppler derivation of relativity

Occam razors shorten derivations. How much does Evenson’s CW razor-cut of Einstein’s PW

axiom shorten derivation of relativity? Quantifying length for Einstein’s popular (and still common)

derivation is difficult as is a step-by-step count for the CW derivation that follows. Let us just say that

several steps are reduced to very few steps. More important is the wave-nature insight that is gained.
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K pK 3
K 1

K g

 ck

ω

2ω

ω

(b) Laser group and phase wavevectors
      (Per-space-time Cartesian lattice)

L=K 3 R=K 1

per-time
ω=2π ν

ω

2ω

� per-space
ck=2πc κ

space x

time ct Abs|Ψ|

Re Ψ Im Ψ

  (c) Laser Coherent Wave (CW) paths
         (Space-time Cartesian grid)

  (d) Laser Pulse Wave (PW) Paths
       (Space-time Diamond grid)

space x

time ct

P

O

1st base

2nd base

3rd base

600Thz

Left-to-Right
Beam

600Thz

Right-to-Left
Beam

λ = 1 μm
2   4

0

1
ω

1

0
ω

Fig. 6. Laser lab view of 600Thz CW and PW light waves in per-space-time (a-b) and space-time (c-d).

In fact, a case can be made that a CW derivation takes zero steps. The answer is already done

by a 2-CW wave pattern in Fig. 7c that automatically produces an Einstein-Lorentz-Minkowski
14

 grid

of space-time coordinates. Still we need logical steps drawn in Fig. 7a-b that redo the Cartesian grid in

Fig. 6 just by Doppler shifting each baseline one octave according to c-axiom (1.1) (“Stay on baselines!”)

and t-reversal axiom (1.2) (“If 1
st
 base increases by one octave, 3

rd
 base decreases by the same.”)
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So Fig. 7 is just Fig. 6 seen by atoms going right-to-left fast enough to double both frequency

= /2  and wavevector ck of the vector R on 1
st
 base (while halving vector L on 3

rd
 base to obey (1.2).)

R=K1=( ck 1, 1)= (2,2)    (2.5a) L=K3=( ck 3, 3 )= (-1/2, 1/2)  (2.5b)

The atom sees head-on R-beam blue-shift to frequency 1 =2 = 1 /2 =1200THz(UV) by doubling green

1= /2 = 3=600THz. It also sees the tail-on L-beam red-shift by half to 3 = /2= 3 /2 =300THz(IR).

The phase vector Kphase and group vector Kgroup are plotted in (ck , )-space in Fig. 7b.

K phase =
K1 + K3

2
=

1

2

ck1 + ck3

1 + 3

= P =

ckp

p

=
2

2 1 / 2

2 +1 / 2
=

3 / 4

5 / 4

 (2.6a)

Kgroup =
K1 K3

2
=

1

2

ck1 ck3

1 3

= G =

ckg

g

=
2

2 +1 / 2

2 1 / 2
=

5 / 4

3 / 4

(2.6b)

Phase velocity is the inverse of group velocity in units of c, and V group is minus the atoms’ velocity!

Vphase

c
=

1 + 3

ck1 + ck3

=
2 +1 / 2

2 1 / 2
=

5

3
(2.7a)     

Vgroup

c
=

1 3

ck1 ck3

=
2 1 / 2

2 +1 / 2
=

3

5
(2.7b)

Velocity u=V group =3c/5 is the atoms’ view for a lab speed of zero had by laser standing nodes. (It is the

speed of the lasers’ group nodes and their connecting lab bench relative to the atoms.) Phase velocity

V phase =5c/3 is the atoms’ view for a lab speed of infinity had by lasers’ real wave zeros. (x-zero lines

are simultaneous in the laser lab but not so in the atom-frame. x-lines tip toward ct-lines in Fig. 7c.)

Eqs. (2.5-7) use a Doppler blue-shift factor b=2. If each “2” is replaced by “b” then Eq. (2.7b)

yields a relation for the laser velocity u=V group relative to atoms in terms of their blue-shift b.

Vgroup

c
=

u

c
=

b 1 / b

b +1 / b
=

b2 1

b2
+1

(2.8a)

Inverting this gives standard relativistic Doppler b vs. u/c relations.

b2
= 1+ u / c( ) / 1 u / c( )     or:    b = 1+ u / c( ) / 1 u / c( ) = 1+ u / c( ) / 1 u2 / c2 (2.8b)

It is remarkable that most treatments of relativity first derive second order effects, time dilation and

length contraction. Doppler and asimultaneity shifts are first order in u but treated second. Setting 2=b

in (2.6) using (2.8) gives vectors G = Kg = (a
d ) and P = K p = (d

a )  with dilation factor d = 1 / 1 u2 / c2

and asimultaneity factor a=u·d/c. (So d arrives early here, too, but with a wavelike finesse.)

K phase =
2

b 1 / b

b +1 / b
=

(u / c) / 1 u2 / c2

1 / 1 u2 / c2
(2.9a) Kgroup =

2

b +1 / b

b 1 / b
=

1 / 1 u2 / c2

(u / c) / 1 u2 / c2
(2.9b)

K-vector components d and a (in  units) are Lorentz-Einstein (LE) matrix coefficients relating atom-

values (ck , ) or (x ,t ) to lab-values (ck, ) or (x,t) based on lab unit vectors Ĝ = 0
1( )  and P̂ = 1

0( )  in (2.2).
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ω
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= 4
3

4
5

ω

1200Thz

Left-to-Right
Beam

300Thz

Right-to-Left
Beam

k R
k L

Fig.7 Atom view of 600Thz CW and PW light waves in per-spacetime (a-b) and space-time (c-d) boosted to u=3c/5.

The Lorentz
15

-Einstein
16

 per-spacetime and spacetime transformations follow from K-vectors (2.9).

ck
=

1

1 u2 / c2

u / c

1 u2 / c2

u / c

1 u2 / c2

1

1 u2 / c2

ck
 (2.10a)

x

ct
=

1

1 u2 / c2

u / c

1 u2 / c2

u / c

1 u2 / c2

1

1 u2 / c2

x

ct
 (2.10b)
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Wave K-vectors are bases for space-time and per-space-time. One symmetric LE matrix, invariant to

axis-switch ( ,ck)
 

(ck, ), applies to both. Conventional ordinate vs. ck-abscissa per-space-time and

ct-ordinate vs. x-abscissa space-time plots are used in Fig. 7 where 
 
=P=Kphase and 

 ck =G=Kgroup vectors

serve as ct-time and x-space bases, respectively, and then also serve as and-ck-bases.

The left and right pulse wave (PW) vectors L and R in per-space-time Fig. 7a also define left

and right PW paths in space-time Fig. 7d. This holds in either convention because L and R lie on 45°

reflection planes that are eigenvectors of an axis-switch ( ,ck)
 

(ck, ) with eigenvalues +1 and –1

while half-sum-and-difference vectors P = (L + R) / 2 and G = (L R) / 2  simply switch (P
 

G).

Einstein’s PW axiom “PW speed c is invariant,” might give the impression that pulses themselves

are invariant. This may hold for -pulses whose infinite bandwidth gives them enough energy to start a

new universe! But, finite-  pulses in Fig. 7d clearly deform. Only their speed is invariant. Also, each

PW intersection-interference square in Fig. 6d deforms into a Minkowski-like rhombus in Fig. 7d.

Geometry of relative phase

Einstein relativity shows Galilean relativity, based on simple velocity sums and differences, to

be a 400 year-old approximation that fails utterly at high speeds. Einstein also dethrones infinite

velocity, Galileo’s one invariant velocity shared by his observers regardless of their (finite) velocity. In

its place reigns a finite velocity limit c that is now the Einstein-Maxwell-Evenson invariant.

So it is remarkable that frequency sums and differences (1.10) simplify relativity by using

Galilean-like rules for angular velocities 
 A = A  of light phases A . Frequency sums or differences

A ± B  from interference terms like A B* = ABe i( A B )t
between wave pairs A = Ae i At

and

B = Be i Bt
 are relative frequencies (beat notes, overtones, etc.) subject only to simple addition and

subtraction rules that are like Galileo’s rules for linear velocity. Simple angular phase principles deeply

underlie modern physics, and so far there appears to be no c-like speed limit for an angular velocity .

Phase principles have electromagnetic origins. Writing oscillatory wave functions using real

and imaginary parts is common for studies of AC electrical phenomena or harmonic oscillators in

general. The real part q of oscillator amplitude q+ip= Ae i t  is position q=Acos t. The imaginary part

p=Asin t is velocity v =-A  sin t in units of angular frequency . Positive  gives a clockwise rotation

like that of classical phase space or analog clocks, so a minus sign in conventional Ae i t phasors serves

to remind us that wave frequency  defines our clocks and wavevector k= /c defines our meter sticks.

A plane wave of wavevector k in Fig. 2 is drawn as a phasor array, one A = A ei kx
 for each

location x. A plane wave advances in time according to A ei(kx t )
 at phase velocity V= /k. Similar
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convention and notation are used for light waves and for quantum matter waves, but only light waves

have physical units, vector potential A and electric E-field, defining their real and imaginary parts.

While classical laser wave phase is observable, only relative quantum wave phase appears to be so.

The concept of relative phase (and frequency) arises in classical or quantum interference where

a sum of two waves A = Aei A and B = Bei Bt
 may be represented at each position x by a vector sum

of a phasor-A with a phasor-B as in Fig. 8a. (Fig. 2 has a sum of 12 phasors at each x-point.)  The

result is a clockwise race around a track between the faster one, say A-phase A = kAx At  of angular

speed - A, and the slower B-phase B = kBx Bt  of angular speed - B as sketched in Fig. 8b.

When A passes B the sum is a maximum or beat that then subsides to a minimum or node when

A is on the opposite side of the track from B. If amplitude magnitudes |A| and |B| are equal as they are

in Fig. 8, then the wave node is a wave zero that defines one of the group G-lines in WZ coordinates of

Fig. 4 through Fig. 7. The relative angular velocity = A B  (beat angular frequency) is the angular

rate at which A passes B. A-B passings occur  times (per sec.) where  is  divided by track length 2 .

beat = / 2 = A B (2.11)

If one could ride in an angular Galilean frame of phasor-B, then A would be seen passing at

angular speed  with frequency . Suppose instead, one could ride at their average angular speed .

=
A + B

2
(2.12)

Then Galilean arithmetic (which lasers given no reason to doubt in these matters) implies that phasor A

or B would each appear with a relative speed of plus-or-minus half their relative velocity.

±
2
= ±

A B

2
(2.13)

A point of view relative to phasor B is shown by the first of Fig. 8c. A dashed circle represents

moving phasor A with A on one diagonal of an inscribed rectangle whose sides are the resultant sum

A + B  and difference A B . The other diagonal B appears fixed. A companion figure has A

appear fixed instead. Resultants in either figure begin and end on a dashed circle traced by a phasor

that is moving relative to the other. A rectangle-in-circle is a key Euclidian element of wave physics

and is a key feature of a later figure (Fig. 10) that shows the essence of wave geometry.
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A moves relative to B

(c) Phasor-relative views

(a) Sum of Wave Phasor Array

A

A B

B

ψA=eiα

ψB=eiβ

Sum: ΨA+B=ψA+ψB

Difference:ΨA−B=ψA−ψB

ΨA+B=ψA+ψB

(α−β)

Fig. 8 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

(c) In phasor-relative views either A or else B is fixed. An evolving sum-and-difference rectangle is inscribed in the

(dashed) circle of the phasor moving relative to the fixed one.
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The half-sum and half-difference angles in Fig. 8b and frequencies (2.12) and (2.13) appear in

the interference formulas (1.10) that lead to relativistic Lorentz-Einstein coordinate relations (2.10) and

their WZ grid plots of Minkowski coordinates in Fig. 7c. One key is the arithimetic mean ( + ) / 2  of

phases that gives the geometric mean ( A B )1/2
= Aei( + ) /2 of wave phasor amplitudes.  The other key

is the difference mean ( ) / 2( )  and its cross mean ( A B*)1/2
= Aei( ) /2 . Euclidian means and

rectangle-in-circle constructions underlie relativistic wave geometry and mechanics as is shown below.

Geometry of Doppler factors

Any number N of transmitter-receivers (“observers” or “atoms” previously introduced) may

each be assigned a positive number b11, b21, b31, …that is its Doppler shift of a standard frequency 1

broadcast by atom-1 and then received as frequency m1= bm1 1 by an atom- m. By definition the

transmitter’s own shift is unity. (1= b11) Also, coefficient bm1 is independent of frequency since such

geometric relations work as well on 1THz or 1Hz waves as both waves march in lockstep to the

receiver by Evenson’s CW axiom (1.1). The production times of a single wavelength of the 1Hz-wave

and 10
12

 wavelengths of the 1THz wave must be the same (1sec.), and so must be reception time for the

two waves since they arrive in lock step, even if  is shortened geometrically by 1/ bm1.

If atoms travel at constant speeds on a straight superhighway, then bm1 in (2.8a) tells what is the

relative velocity um1 of the m
th

 atomic receiver relative to the number-1 transmitter.

um1

c
=

bm1
2 1

bm1
2
+1

(2.14)

The velocity um1 is positive if the m
th

 atom goes toward transmitter-1 and sees a blue (bm1>1) shift, but

if it moves away um1 is negative so it sees a red (bm1<1) shift. Transmitter-1 has no velocity relative to

itself. (u11=0) Infinite blue (or red) shift bm1=  (or bm1=0) gives um1=c (or um1=-c) and this defines the

range of parameters. The bm1 are constant until atom-m passes atom-1 so relative velocity changes sign

( u1m u1m ). Doppler shift then inverts ( b1m 1 / b1m ) as is consistent with axiom (1.2).

Suppose now b12, b22, b32, …are Doppler shifts of frequency 2 transmitted by the second atom

and received by the m
th

 atom as frequency m2= bm2 2. (Any atom (say the n
th

) may transmit, too.)

   mn= bmn n (2.15a)

Recipients do not notice if atom-n simply passes on whatever frequency nm came from atom-m. If

frequency n in (2.15a) is n1= bn1 1 that atom-n got from atom-1 then atom-m will not distinguish a

direct m1 from a perfect copy bmn bn1 1 made by atom-n from atom-1 and then passed on to atom-m.

m1 = bm1 1= bmn bn1 1 (2.15b)
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A multiplication rule results for Doppler factors and applies to light from atom-1 or any atom-p.

mp/ p= bmp = bmn bnp (2.15c)

An inverse relation results from atom-p comparing its own light to that copied by atom-n.

1= bpp = bpn bnp  or:  bpn =1/bnp (2.15d)

Notice that copying or passing light means just that and does not include reflection or changing

+k to –k or any other direction. This presents a problem for a receiver not in its transmitter’s (+k)-beam

and certainly for atom-p receiving its own beam. The relations (2.15) depend only on relative velocities

and not positions (apart from the problem that receivers might be on the wrong side of transmitters).

An obvious solution is to let the receiver overtake its transmitter or failing that delegate a slave

transmitter or receiver on its right side. A more elegant solution is to conduct experiments in a large

circular coaxial (dispersion-free) waveguide or ring laser so the (+k)-beam illuminates the backside as

well as forward. Fig. 9 shows one arrangement with N=5 receivers of a 3=600THz source whose

various speeds produce a matrix of N(N-1)=20 Doppler shifted frequencies mn and factors bmn.

300THz  400THz  600THz 900THz 1200THz
300THz 300/300 300/400 300/600  300/900  300/1200

  b11=1 b12=0.75 b13=0.5  b14=0.333   b15=0.25

400THz 400/300 400/400 400/600  400/900  400/1200
b21=1.333   b22=1 b23=0.667  b24=0.449   b25=0.333

600THz 600/300 600/400 600/600  600/900  600/1200
  b31=2 b32=1.5   b33=1  b34=0.667   b35=0.5

900THz 900/300 900/400 900/600  900/900  900/1200
  b41=3 b42=2.25  b43=1.5    b44=1   b45=0.75

1200THz  1200/300 1200/400 1200/600  1200/900 1200/1200
  b51=4 b52=3    b53=2  b54 =1.333    b55 =1

10
Doppler
red-shift
ratios:
rl,h = υlo/υhi

10 Doppler blue-shift ratios: b h,l = υhi/υlo

5 Doppler

fixed
receiver

blue shifted oncoming receiversred shifted departing receivers

,�+&0-,�+&0-

,�+&0-,�+&0-
,�+&0-

&-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-& &-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-& &-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-&&-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-& &-0-�1-&&-0-�1-&
&-0-�1-&&-0-�1-&

green
reference

source

Fig. 9 Doppler shift b-matrix for a linear array of variously moving receiver-sources.
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Doppler rapidity and mean values

Composition rules (2.15c) suggest defining Doppler factors b=e  in terms of rapidity =ln b.

bmp = bmn bnp implies: mp = mn + np where: bab = e ab (2.16)

Rapidity parameters mn mimic Galilean addition rules as do phase angles  of wavefunctionss ei , and

 and  are the parameters that underlie relativity and quantum theory. In fact, by (2.14) rapidity mn

approaches the relative velocity parameter umn /c between atom-m and atom-n for speeds much less

than c. Rapidity is also convenient for astronomically large Doppler ratios bab since then the numerical

value of ab =ln bab is much less than bab while the value of umn /c inconveniently approaches 1.

At intermediate relativistic speeds the geometric aspects of Doppler factors provide a simple

but precise and revealing picture of the nature of wave-based mechanics. Any pair of counter moving

continuous waves (CW) has mean values between a K-vector R=K1=(ck1, 1) going left-to-right and an

L=K3=(ck3, 3) going right-to-left. A key quantity is the geometric mean  of left and right frequencies.

= 1 3 (2.17)

In Fig. 10a frequency 1=1 or 3=4 is a blue (b=e
+

=2) or red (r=e =1/2) shift of mean = 1 4 = 2 .

1 = b = e (2.18a) 3 = r = e (2.18b)

In units of 2  ·300THz, frequency values 3=1 and 1=4 were used in Fig. 7. Their half-sum 5/2 is their

arithmetic mean. That is the radius of the circle in Fig. 10b located a half-difference (3/2) from origin.

1 + 3

2
=

e+ + e

2

              = cosh =
5

2

 (2.19a)

1 3

2
=

e+ e

2

              = sinh =
3

2

(2.19b)

By (2.8) the difference-to-sum ratio is the group or mean frame velocity-to-c ratio u/c=3/5 for b=2.

1 3

1 + 3

=
sinh

cosh
= tanh =

u

c
(2.19c)

The geometric mean ( = 1 4 = 2 ) in units of 2  ·300THz is the initial 600THz green laser lab

frequency used in Fig. 6. Diamond grid sections from Fig. 7b are redrawn in Fig. 10b to connect with

the geometry of the Euclidian rectangle-in-circle elements of interfering-phasor addition in Fig. 8c.

Various observers see the single continuous wave frequencies 1 or 3 shifted to 1=e
+

1 and

3=e 3, that is, to values between zero and infinity. But, because factor e  cancels e+ , all will agree

on the 2-CW mean value  =[ 1 3]
1/2

=[ 1 3]
1/2

. A 2-CW function has an invariant  of its rest frame

(Recall Fig. 7c) seen at velocity u=c( 1- 3)/( 1+ 3). A single CW has no rest frame or frequency since

all observers see it going c as in Fig. 5. To make a home frame, a single CW must marry another one!
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Fig. 10a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Fig. 10b Geometry for the CW wave coordinate axes in Fig. 7.
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Invariance of proper time and frequency

Space, time, and frequency may seem to have an out-of-control fluidity in a wavy world of

relativism, so it is all the more important to focus on relativistic invariants. Such quantities make

ethereal light billions of times more precise than any rusty old meter bar or clanking cuckoo clock.

It is because of the time-reversal (1.2) and Evenson axiom (1.1) that product 1 3=
2
 is

invariant to inverse blue-and-red Doppler shifts b=e
+  and r=e . It means the blue-red shifted diamond

in Fig. 10b or Fig. 7 has the same area R xL  as the original green “home field” baseball diamond area

RxL drawn below it and in Fig. 6. Constant products 1 3=const. give families of hyperbolas.

|RxL|=2|GxP|=2|KgroupxKphase|=2|
2
cosh

2
  -

2
sinh

2
|=2

2

One hyperbola in Fig. 11a intersects bottom point B=  (“pitchers’mound”). The other hits 2B (2nd
 base).

Each horizontal P -hyperbola is defined by the phase vector P=Kphase or some multiple of P.

K phase =
2

e e

e + e
=

sinh

cosh
=

ckp

p

     on P-hyperbola:    p( )
2

ckp( )
2
=

2 (2.20a)

Each vertical G -hyperbola is defined by the wave group vector G=Kgroup or some multiple of G.

Kgroup =
2

e + e

e e
=

cosh

sinh
=

ckg

g

     on G-hyperbola:    ckg( )
2

g( )
2
=

2 (2.20b)

The G-vectors serve as tangents to P-hyperbolas and vice-versa. The tangent slope dk
d to any

(k) curve is a well known definition of group velocity. Fig. 11b shows how dk
d of a P-hyperbola is

equal to secant slope k in Fig. 11a as defined in the u=Vgroup equation (2.7b) based on CW axioms.

Phase velocity k =Vphase and its P-vector is an axis-switch ( ,ck)
 

(ck, ) of k and its G-vector. In

conventional c-units Vgroup/c<1 and 1<Vphase/c are inverses according to (2.7). (Vphase Vgroup=c
2)

Features on per-space-time (ck, ) plots of Fig. 10-11 reappear on space-time (x,ct) plots as

noted in  Fig. 4, Fig. 6 and Fig. 7. A space-time invariant analogous to (2.20) is called proper-time .

ct( )
2

x( )
2
= c( )

2
= ct( )

2
x( )

2
(2.21)

It conventional to locates oneself at (0,ct) or presume one’s origin x=0 is located on oneself. Then

(2.21) reduces to time axis ct=c . A colloquial definition of proper time is age, a digital readout of

one’s computer clock that all observers note. By analogy,  is proper-frequency, a rate of aging or a

digital readout on each of the spectrometers in Fig. 9. Each reading is available to all observers.

( )
2

ck( )
2
= ( )

2
= ( )

2
ck( )

2
(2.22)

The same hyperbolas (2.22) mark off the laser lab ( ,ck), the atom frame ( ,ck ), or any other frame.
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Fig. 11 (a) Horizontal G-hyperbolas for proper frequency B=  and 2B and vertical P-hyperbolas for proper wavevector k.

(b) Tangents for G-curves are loci for P-curves, and vice-versa.

The proper frequency of a wave is that frequency observed after one Doppler shifts the wave’s

kinks away, that is, the special frequency  seen in the frame in which its wavevector is zero (ck=0) in
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(2.22). Hence a single CW has a proper frequency that is identically zero (  =0) by Evenson’s axiom

( =ck), so single CW light cannot age. If we could go c to catch up to light’s home frame then its

phasor clocks would stop. (But, that would be an infinite Doppler shift that we can only approach.)

To produce a nonzero proper frequency  0 requires interference of at least two CW entities

moving in different directions and this produces a standing wave frame like Fig. 6c moving at a speed

less than c as shown in Fig. 7c. Matched CW-pairs of L and R baselines frame a “baseball diamond”

for which the phase wavevector kp in (2.2a) is zero. Then frame velocity u=Vgroup in (2.3b) is zero, too.

Fig. 12 shows the plots of per-spacetime “baseball diamond” coordinates for comparison of lab

and atom frame views. While Fig. 12a is a “blimp’s-eye view” of the lab-frame diamond in Fig. 6, the

atom frame view in Fig. 12b looks like the baseball field seen by a spectator sitting in the stands above

the dugout. Nevertheless, identical hyperbolas are used to mark grids in both views.

Each point on the lower hyperbola is a bottom point =B=2 (600THZ) for the frame whose

relative velocity u  makes it a -axis (k =0)-point, and every (k =0)-point on the upper hyperbola is its

bottom point =2B=4 (1200THZ), and so on for hyperbolas of any given proper frequency value .

The same applies to space-time plots for which time ct  takes the place of per-time  and space x  takes

the place of per-space ck . Then bottom points are called proper time or -values from (2.21).

For single CW light the proper time must be constant since a single CW cannot age. It is a

convention to make the baselines or light cone intersect at the origin in both time and space. This sets

the baseline proper time constant  to zero. Then invariants (2.21) reduce to baseline equations x=±ct or

x =±ct  for all frames. The space-time light cone relations are in direct correspondence with the per-

space-time light cone relations =±ck or =±ck  for zero proper frequency in all frames and are

concise restatements of the Evenson CW axiom (1.1).
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3. Mechanics by CW axioms

Each of the 2-CW structures or properties discussed so far are due to relative interference

effects between pairs of single CW entities that, by themselves, lack those properties. Single CW plane

waves have no proper invariant frequency, no rest frame, and no velocity less than the unreachable c.

To acquire such properties there must be an interference encounter or pairing with another CW.

Two-CW interference acquires other important properties including classical and relativistic

mechanics of mass, energy, momentum that characterize a quantum matter wave. Such acquisition is

from hyperbolic phase relations (2.19-20) that, in turn, follow from CW axioms (1.1) and (1.2).

 

p = B cosh

 B +
1

2
B 2  (for u c)

(3.1a)

 

ckp = Bsinh

      B  (for u c)
(3.1b)   

 

u

c
= tanh

      (for u c)

(3.1c)

Here B= . The first two are components ( p,ckp) of the P-vector in Fig. 11, and u/c is the tangent slope

at P. At low group velocity (u c) rapidity  approaches u/c, and p and kp are simple functions of u.

 

p B +
1

2

B

c2
u2  (3.2a)   

 

kp
B

c2
u     (3.2b)

We note that these ( p,ckp) functions fit classical Newtonian-energy E and Galilean-momentum p.

E = const.+
1

2
Mu2  (3.3a)   p Mu     (3.3b)

Multiplying wave results (3.2) by a single scale factor s=Mc
2
/B gives classical definitions (3.3).

    
 

E = s p sB +
1

2

sB

c2
u2 (3.4a)     

 

p = skp
sB

c2
u     (3.4b)

Newton’s const in E (3.3a) is moot; only energy difference E counts. But, in (3.4a) const.=sB is the

proper-frequency value B=   of Fig. 11b scaled to sB=s . It is also the famous Einstein rest energy.

const.= sB = Mc
2
 = s  (3.4c)

Then exact relativistic Planck-DeBroglie quantum scaling laws follow from exact CW results (3.1).

   E = s p = Mc2 cosh =
Mc2

1 u2 / c2
(3.5a)      p = skp = Mcsinh =

Mu

1 u2 / c2
(3.5b)

Scale factor s in Planck
17

 E=s  or DeBroglie
18

 p=sk laws is found by experiment. The lowest

observed s-value is the Planck angular constant =1.05·10
-34

J·s in Planck’s original law E= N=hN  for

N=1. Integer N is a light-quantum-number or photon-count discussed in Sec. 6. (Occam’s razor is used

again to further slice classical CW’s into N-photon waves belonging to nets of ( N,ckN)-hyperbolas.)

Each photon of a 2-CW cavity adds a tiny mass M = /c
2
=   (1.2·10

-51
)kg to the cavity but p is

zero. A single free CW has no rest mass but its momentum p = k= /c=   (3.5·10
-43

)kg·m·s
-1from (3.5b)

is p =M  c. It is small, too, but M  times c is not as tiny as M  and it resembles Galileo’s relation (3.3b).



Harter Optical space-time coordinates 30

Definitions of wave mass

If mass or rest energy is due to proper phase frequency , then a quantum matter wave has

mass without invoking hidden Newtonian “stuff.” There is a certain Occam-like economy in the fact

that two CW’s of light give exact classical mass-energy-momentum relations (3.5). However, a CW

theory exposes multiple definitions of mass that a Newtonian theory would not distinguish.

First, the Einstein-Planck wave frequency-energy-mass equivalence relation (3.4c) ascribes rest

mass M rest  to a scaled proper frequency s  /c2. The scale factor s is Planck’s s= N for cavity mode N.

 
Mrest = E / c2

= N / c2 (3.6)

For rest electron mass me =9.1·10
-31

kg or Mp =1.67·10
-27

kg of a proton, the proper frequency times N=2 is

called zwitterbevegun (“trembling motion”) and is as mysterious as it is huge. (Electron rest frequency

e = me c
2
/  =7.76·10

+20
(rad)s

-1 is the Dirac (e+
e )-pair production

19
 threshold as discussed in Sec. 6.)

Second, define momentum-mass Mmom by ratio p/u of momentum (3.5b) to velocity u. (Galileo’s

p=Mmomu) Now Mmom varies as cosh e / 2  at high rapidity  but approaches invariant Mrest as 0 .

 

p

u
Mmom =

Mrestc

u
sinh = Mrest cosh

u c
Mreste / 2

                   = Mrest 1 u2 / c2
u c

Mrest

(3.7)

Frame velocity u is wave group velocity and the Euclid mean construction of Fig. 11a shows u is the

slope of the tangent to dispersion function (k). A derivative of energy (3.5a) verifies this once again.

Vgroup =
d

dk
=

dE

dp
=

c2 p

E
= u (3.8)

Third, define effective-mass Meff as ratio
 
p / u =F/a of momentum-change to acceleration.

(Newton’s F=Meffa) Meff varies as cosh3 e3 / 2  at high rapidity  but is invariant Mrest as 0 .

 

F

a
Meff

dp

du
=

dk

dVgroup

=
d

dk

d

dk
=

d 2

dk 2

                = Mrest 1 u2 / c2( )
3/2

u c
Mrest

(3.9)

Effective mass is  divided by the curvature of dispersion function, a general quantum wave

mechanical result. Geometry of a dispersion hyperbola =Bcosh  is such that its bottom (u=0) radius of

curvature (RoC) is the rest frequency B=Mrestc
2
/ , and this grows exponentially toward  as velocity u

approaches c. The 1-CW dispersion ( =±ck) is flat so its RoC is infinite everywhere and so is photon

effective mass (Meff( )= ) consistent with the (All colors go c)-axiom (1.1). The other extreme is photon

rest mass (Mrest( )=0. Between these extremes, photon momentum-mass depends on CW color .

Mrest( )=0 (3.10a) Mmom( )=p/c= k/c= /c
2   (3.10b) Meff( )= (3.10c)

For Newton this would confirm light’s “fits” to be crazy to the point of unbounded schizophrenia.
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Absolute vs. relative phases

Probably Newton would find a CW theory to be crazy. Claiming that heavy hard matter owes

its properties to rapid hidden phase oscillations would not elicit a Newtonian invitation to the Royal

Society but rather to a lunatic asylum. Even though CW results (3.2) give Newtonian axioms (3.3) at

low speeds, the result would seem to fail at high speeds where exact results (3.5) sag below Newton’s.

Also, the enormous constant Mc
2 in the energy would, in 1670, seem meaningless.

Not until 1905
20

 does Einstein’s theory appear with energy sag and Mc
2. Yet Einstein’s classical

training left him leery of hidden quantum wave phases with dicey interpretations of intensity  as

probability. Also, he may have asked why observable results depend on a square =| |
2 that kills the

overall phase frequency, seemingly losing the one quantity that represents (or is) the total energy.

Square | |
2 of a 2-CW =e

ia
+e

ib loses phase factor ei(a+b)/2 leaving only group functions cos2 (
  2
a b )

of differences 1 3 or k1 k3  of 1
st
 and 3

rd
 base frequencies or k-vectors. Group beat frequency

= 1 3 is zero in the rest frame of Fig. 6c where it is a stationary wave. In Fig. 7c or any other

frame, | |
2 is not stationary but is observed to have velocity Vgroup 0. Fourier sums of m=3 or more

terms = a1e
i(k1x 1t )

+ a2ei(k2x 2t )
+ a3e

i(k3x 3t )
+ ...  may have multiple beats in *  as in Fig. 7d.

P =| |2= * = ai * aje
i( kij x ij t)

(3.11)

With m(m 1) / 2  observable difference ij = 1 j  or beat notes, P cannot rest in any frame.

Differences or derivatives are observable while absolute -frequency stays hidden until two quantum

objects interfere. Then new beats arise from differences between the two absolute frequencies and old

ones. A new absolute phase (not in | |
2) is the sum of them all. Limiting observation to beats or relative

frequency may be a quantum version of Einstein’s popularized saw, “It’s all relative.” (Phase velocity

may escape with its Galilean arithmetic intact, but here it finally surrenders its absolutes to relativism.)

Total phase gives total energy E or momentum p, but differentials are what one feels through

work E or impulse p. Invariant quantities like  and Mrest depend on total phase but intensity (3.11)

has only differentials or relative beats. Among frame-dependent relative quantities are group velocity u

(3.8), Mmom (3.7), and Meff (3.9). But, rest mass Mrest (3.4c) is a frame-invariant absolute quantity. Recall

however that Mmom and Meff approach Mrest at zero velocity. (While | |
2 may register a   beat with a DC

(static 0=0) wave, lack of resonance confines ( 0=0)-carrier waves to beat only locally.)

The phase frequency p in a quantum wave eip cos g = e
i(kp x pt)

cos(k
g
x

g
t)  is like a carrier

frequency of a radio wave, fast and silent. The group frequency g is like the audible signal, much

slower and heard in resonant beats a b involving carrier and receiver. Atomic “carrier” frequencies

p=Mpc
2
/  due to rest mass are enormous as are those of atomic measuring devices that play the role of

“receivers” in quantum experiments. Measurement involves resonant contact of an atom and devices

that horse-trade beats much faster than even those achieved by Evenson or any laser technology so far.
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One way to avoid huge Mc
2
/ -related phase frequencies is to ignore them and approximate the

relativistic equation E=Mc
2
cosh  of (3.5a) by the Newtonian approximation (3.4a) that deletes the big

rest-energy constant sB=Mc
2. The exact energy (3.5a) that obeys CW axioms (1.1) is rewritten in terms

of momentum (3.5b) in (3.12). Then (3.13) gives the Newtonian approximation with Mc
2 deleted.

E =
Mc2

1 u2 / c2
= Mc2 cosh = Mc2 1+ sinh2

= Mc2( )
2
+ cp( )

2
(3.12)

E = Mc2( )
2
+ cp( )

2
1/2

Mc2
+

1

2M
p2

S approx

1

2M
p2 (3.13)

Since only frequency differences affect an observation based on | |
2 (3.11), the energy origin may be

dropped from (E=Mc
2
, cp=0) to (E=0, cp=0). (Frequency is relative!) Hyperbola (3.12) is then Newton’s

parabola (3.13) for momentum p=Mu much less than Mc, or u much less than c.

Group velocity u=Vgroup=dk
d  of (3.8) is a relative or differential quantity so origin shifting does

not affect it. However, phase velocity k =Vphase is greatly reduced by deleting Mc
2 from E= . It slows

from Vphase=c
2
/u that is always faster than light to a sedate sub-luminal speed of Vgroup/2. Having Vphase go

slower than Vgroup is an unusual situation but one that has achieved tacit approval for Bohr-Schrodinger

matter waves.
21

 The example used in Fig. 4 is a 2-CW matter wave exhibiting this.

Standard Schrodinger quantum mechanics, so named in spite of Schrodinger‘s protests
22

, uses

Newtonian kinetic energy (3.13) (or (3.3) with potential  (as the const.-term) to give a Hamiltonian.

H=p
2
/2M +  or: = 

2
k

2
/2M + k (3.14)

The CW approach to relativity and quantum exposes some problems with such approximations.

First, a non-constant potential  must have a vector potential A so that ( ,cA) transform like

( ,ck) in (2.10a) or (ct,x) in (2.10b) or as (E,cp) with scaling laws p= k and E= . Transformation

demands equal powers for frequency (energy) and wavevector (momentum) such as the following.

(E- )
2
=(p-cA)

2
/2M+Mc

2
 or: ( - k)

2
= ( k-cA)

2
/2M+Mc

2
 (3.15)

Also, varying potentials perturb the vacuum so single-CW’s may no longer obey axioms (1.1-2).

Diracs’s elegant solution obtains ±pairs of hyperbolas (3.12) or (3.15) from avoided-crossing

eigenvalues of 4x4 Hamiltonian matrix equations. These ideas require three-dimensional wavevectors

and momenta as will be introduced later. First, the more fundamental Lagrangian geometry of quantum

phase will be used to relate relativistic classical and quantum mechanics.
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4. Classical vs. quantum mechanics

The CW-spectral view of relativity and quantum theory demonstrates that wave phase and in

particular, optical phase, is an essential part of quantum theory. If so, classical derivation of quantum

mechanics might seem about as viable as Aristotelian derivation of Newtonian mechanics.

However, the 19
th

 century mechanics of Hamilton, Jacobi, and Poincare developed the concept

of action S defined variously by area 
 

pdq in phase-space or a Lagrangian time integral Ldt .  Action

definition begins with the Legendre transformation of Lagrangian L and Hamiltonian H functions.

  L = p x H (4.1a)

L is an explicit function of x and velocity   u = x  while the H is explicit only in x and momentum p.

0 =
L

p
   (4.1b)

 

p =
L

x
   (4.1c)

 

 0 =
H

x
   (4.1d)

 

x =
H

p
   (4.1e)

Multiplying by dt gives the differential Poincare invariant dS and its action integral S = Ldt .

 dS = L dt = p dx H dt (4.2a)  S = L dt = p dx H dt (4.2b)

Planck and DeBroglie scaling laws p= k and E=  identify action S as scaled quantum phase .

  
d = L dt = k dx dt (4.3a)        

 
= k dx dt (4.3b)

If action dS or phase d  is integrable, then Hamilton-Jacobi equations or (k, ) equivalents hold.

   
S

x
= p    (4.4a)

S

t
= H    (4.4b)

x
= k    (4.4c)

t
=    (4.4d)

Phase-based relations (4.4c-d) define angular frequency  and wave number k. The definition (3.8) of

wave group velocity is a wave version of Hamilton’s velocity equation (4.1e).

 

x =
H

p
   equivalent to: u = V

group
=

k

The coordinate Hamilton derivative equation relates to wave diffraction by dispersion anisotropy.

 

p =
H

x
 equivalent to:     

 

k =
x

Classical HJ-action theory was intended to analyze families of trajectories (PW or particle

paths), but Dirac and Feynman showed its relevance to matter-wave mechanics (CW phase paths) by

defining an approximate semi-clasical wavefunction based on the Lagrangian action as phase.

  ei
= eiS /

= ei L dt / (4.5)

The approximation symbol ( ) indicates that only phase but not amplitude is assumed to vary here. An

x-derivative (4.4a) of semi-classical wave (4.5) has the p-operator form in standard quantum theory.

 x

i S

x
eiS /

=
i

p    (4.6a)
 i x

= p (4.6b)
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The time derivative is similarly related to the Hamiltonian operator. The H-J-equation (4.4b) makes

this appear to be a Schrodinger time equation.

 t

i S

t
eiS /

=
i

H (4.7a)
 

i
t

= H (4.7b)

However, this approximation like that of (3.14) ignores relativity and lacks the economy of logic shed

by light waves. The Poincare phase invariant of a matter-wave needs re-examination.

Contact transformation geometry of a relativistic Lagrangian

A matter-wave has a rest frame where x =0=k  and its phase  = kx-  t reduces to μ , a product

of its proper frequency μ = N (or Mc
2
/ ) with proper time t = . Invariant differential d  is reduced, as

well, using the Einstein-Planck rest-mass energy-frequency equivalence relation (3.4c) to rewrite it.

 d  = kdx  dt= μ  d  = -(Mc
2
/ ) d . (4.8) 

-Invariance (2.21) or time dilation in (2.10b) gives proper d  in terms of velocity u =
dx

dt
 and lab dt.

 d  = dt (1-u
2
/c

2
) )=dt sech (4.9)

Combining definitions for action dS=Ldt (4.2) and phase dS = d   (4.3) gives the Lagrangian L.

  L = μ   = -Mc
2

(1-u
2
/c

2
)= -Mc

2
sech  (4.10)

Fig. 13 plots this free-matter Lagranian L next to its Hamiltonian H using units for which c=1=M.

(a) Hamiltonian

Momentum p

P

P′

P′′

-L
-L′

-L′′

L(q,q)
Velocity u=q

Q
Q′

Q′′

-H

-H′

-H′′

H
 H′

 H′′
L

L′
L′′

H

 H′

 H′′

slope:

slope:
∂H
∂p

= q
= u

∂L
∂q

= p

(b) LagrangianH(q,p)

radius = Mc2

O

O

Fig. 13. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian

The relativistic matter Lagrangian in Fig. 13b is a circle. Three L-values L, L ,  and L in Fig.

13 are Legendre contact transforms of the three H-values H , H ,  and H on the Hamiltonian hyperbola

in Fig. 13a. Abscissa p and ordinate H of a point P in plot (a) gives negative intercept -H and slope p of

the tangent contacting the transform point Q in plot (b) and vice-versa. Contact geometry shows a

structure of wave-action-energy mechanics. Lagrange kinetic energy L =
2
1 Mu2  equals H = p2 / 2M  of
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Hamilton with p = Mu  as hyperbola H and circle L both approximate a Newton parabola at low speed

u<<c in Fig. 13. But, as u nears c the L-circle rises and the H-hyperbola sags to meet its c-asymptote.

Action integral S= Ldt is to be minimized. Feynman’s interpretation of S minimization is

depicted in Fig. 14. A mass flies so that its “clock”   is maximized. (Proper frequency
 
μ = Mc2 /  is

constant for fixed rest mass, and so minimizing μ  means maximizing + .) An interference of Huygen

wavelets favors stationary and extreme phase and the fastest possible clock as is sketched in Fig. 15.

Feynman imagines families of classical paths or rays fanning out from each space-time point on a

wavefront of constant phase  or action S. Then, according to a matter wave application of Huygen's

principle, new wavefronts are continuously built in Fig. 15 through interference from “the best” of all

the little wavelets emanating from a multitude of source points on a preceding wavefront. The result is

a classical momentum normal to each wavefront given by p= S or (4.4a) for the “best” ray.

The “best” are so-called stationary-phase rays that are extremes in phase and thereby satisfy

Hamilton's Least-Action Principle requiring that Ldt is minimum for “true” classical trajectories. This

in turn enforces Poincare' invariance by eliminating, by de-phasing, any “false” or non-classical paths

because they do not have an invariant (and thereby stationary) phase. “Bad rays” cancel each other in a

cacophonous mish-mash of mismatched phases. Each Huygen wavelet is tangent to the next wavefront

being produced. That contact point is precisely on the ray or true classical trajectory path of minimum

action and on the resulting “best” wavefront. Time evolution from any wavefront to another is thus a

contact transformation between them described by the geometry of Huygens Principle.

Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house winner

in a kind of wave dynamical lottery on an underlying wave fabric. Einstein’s God may not play dice,

but some persistently wavelike entities seem to be gaming at enormous Mc
2
/ -rates down in the cellar!

It is ironic that Evenson and other metrologists have made the greatest advances of precision in

human history, not with metal bars or ironclad classical mechanics, but by using the most ethereal and

dicey stuff in the universe, light waves. This motivates a view of classical matter or particle mechanics

that is more simply and elegantly done by its relation to light and its built-in relativity, resonance, and

quantization that occurs when waves are subject to boundary conditions or otherwise confined. While

Newton was complaining about the seeming “fits” of light, it was just trying to tell him something.

Derivation of quantum phenomena using a classical particle paradigm appears a doomed effort.

If particles are made by waves, optical or otherwise, rather than vice versa as Newton believed, the case

is closed. Also, CW trumps PW as CW symmetry axioms (1.1-2) derive classical results (3.4) with

exact relativity and quantum relations (3.5) tossed in the bargain. Such Occam economy is not found

on a PW path from Newton to Einstein and Planck. This leaves the basic CW sum-and-difference

phase relations that seem to underlie physics and Poincare contact geometry. They are clarified next.
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Clock on natural

runs the fastest

Clocks on

are neither
slowest nor
fastest

Clock on
 light-cone  path
is stopped

Space x

Time ct

...is stopped

...neither
slowest nor
fastest

Fig. 14 “True” paths carry extreme phase and fastest clocks. Light-cone has only stopped clocks.

Mostly destructive
interference

Stationary phase

by constructive
interference

Fig. 15 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.
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Geometry of circular and hyperbolic functions

Geometry of half-sum and half-difference phase P=(R+L)/2 and group G=(R-L)/2 vectors is

based on trigonometric exponential identities that are crown jewels of 18
th

 century mathematics and

have Euclidian geometric origins shown in Fig. 16. Phase angle-  identities apply to Fig. 16a.

e+i
= cos + i sin

e i
= cos i sin

(4.11a)
cos = (e+i

+ e i ) / 2

i sin = (e+i e i ) / 2
(4.11b)

The circular function tan  is named for a tangent to a unit circle shown in Fig. 16(a). Its incline (sine)

elevation is sin . The complimentary tangent or cotangent cot  completes the tangent distance between

axes where  is circle arc-length-  or subtended area- . Hyperbolic functions use area  for “angle.”

e+ = cosh + sinh

e = cosh sinh
(4.11c)

cosh = (e+ + e ) / 2

sinh = (e+ e ) / 2
(4.11d)

Fig. 16b shows how hyperbolic functions relate to circular ones in Fig. 16a. The circular sine equals

the hyperbolic tangent (sin  =tanh ) and vice versa (tan  =sinh ). Each circular function has a segment

that matches one for a hyperbolic function, for example (cos  =sech ). These relations recap the CW

view of the Legendre contact transformation in Fig. 13 that underlies classical and quantum theory that

is the algebra and geometry for every bit of light-and-matter in and around us!

In Fig. 16, circular area  and hyperbolic area  have been chosen so that tan  =1.15=sinh  and

sin  =0.75=tanh  , that is for u=3c/4. The tangent to the circle in Fig. 16a-b is like the one that contacts

the Lagrangian circle in Fig. 13b to contact-transform it to the Hamiltonian hyperbola in Fig. 13a, and

vice versa the hyperbolic tangent in Fig. 16b is like the one that transforms the Hamiltonian hyperbola

in Fig. 13a to the Lagrangian circle in Fig. 13b.

The hyperbolic tangent u/c=tanh  of (2.19) corresponds to frame rapidity  and group velocity

u=Vgroup =dk
d  in (2.8), (3.8) and in Fig. 11a-b. The circular tangent angle  or inclination sin  belongs to

Lagrangian velocity function (4.10) in Fig. 13b. (The horizontal axis of the latter in the vertical axis of

Fig.11. This geometry is symmetric to axis-switching.) As u and  approach c and , respectively, the

circular angle  approaches /2. This angle  is the stellar velocity aberration angle, that is, the polar

angle that vertical starlight is seen by a horizontally moving astronomer to tip into her direction of

motion. Aberration angle , like rapidity , is 1
st
-order in velocity u and equal u/c to low speeds.

Most of the twelve circular-hyperbolic trigonometric ratios in Fig. 13 belong to one or more

physical or geometric effects shown in prior diagrams beginning with Euclid’s rectangle-in-circle

mean construction of Fig. 10. If prior ratio constructions are overlapped in the form of Fig. 13 there

results in Fig. 17a what might be described as a global ratio riot. This riot is simplified and labeled in

zoom-in views of Fig. 17b-d and they are the basis of the following discussion of the role of tangent-

contact geometry in CW analysis of Poincare contact transformation and relativistic quantum waves.
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ct  (time)

x(space)

 1.0

-1.0

 1.0

ρ

 1

coshρ

sinhρ

cothρ

cschρ

cschρ
e+ρ

sechρ

tanhρ

tanhρ

sinhρ

coshρ

Hyperbolic arc area
ρ =1.0434=rapidity
sinh ρ =1.2433
cosh ρ =1.5955
tanh ρ =0.7792
csch ρ =0.8043
sech ρ =0.6267
coth ρ =1.2833

x

y

 1.0

 1.0

 1

Circlular arc area(a) Circlular Functions
         (plane geometry)

(b) Hyperbolic Functions
   (spacetime geometry)

e-ρ

e-ρ

e-ρ

e-ρ

e-ρ

Fig. 16 Trigonometric geometry (a) Unit circular area =0.86 and (b) Unit hyperbolic area =0.99.
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Hyper-circular contacts

Beginning with the Euclidian mean diagram of Fig. 10, three mean frequencies arise from an

interfering pair of left-moving “red” and right-moving “blue” beams of frequency L and R. First is a

half-sum phase frequency p=( R+ L)/2 (arithmetic mean) that defines the circle radius in Fig. 10.

Second is a half-difference group beat frequency g=( R- L)/2 (difference mean) that is radial distance

of circle center to origin. Third is a root-product proper frequency  =( R· L)
1/2 (geometric mean) that

is the base radius or bottom of a (k) hyperbola of rest energy B=   =Mc
2 above origin in Fig. 11.

Phase and group frequencies are defined as ratios or shifts of the geometric mean frequency ,

and this begins with the Doppler shift definition of the red L=e  and blue R=e+  CW components.

Ratio values p= cosh  and g= sinh  define each point on a -hyperbola dispersion curve in Fig. 17.

Fig. 17 is based on circles with three different radii, one for each mean frequency. The base

circle-b drawn centered at origin has radius B=   =Mc
2 of the Lagrangian circle in Fig. 13b. A smaller

circle-g has group radius g=Bsinh . A larger circle-p has phase radius p=Bcosh  of the Euclidean

circle in Fig. 10 and is drawn with dashed lines in Fig. 17. (Base value B is scaled for energy here.)

Circle-p of larger radius p=Bcosh  is centered at cp= g=Bsinh , a horizontal distance equal

to the radius of the smaller circle-g, while the latter is centered at E= p=Bcosh , a vertical distance

equal to the radius of the larger circle-p. Tangents contacting the circles or the hyperbola define most of

the physical quantities labeled in the zoom-in view of Fig. 17b. Intersections and chords shared by two

of the circles also provide the key quantities as seen in Fig. 17a.

So far the CW development has emphasized the Doppler ratio as a starting point beginning with

Fig. 7 and culminating with the Euclidean means of Fig. 10. However, most developments of relativity

start with velocity u, and that geometric approach is excerpted in a simplified construction of Fig. 17c

where u/c=45/53 and Fig. 17d where u/c=3/5. (Fig. 17a-b and most other figures use u/c=3/5.)  Once the

velocity u/c line intersects the basic b-circle and its horizontal tangent of unit-energy (B=1=Mc
2), it

only takes three more lines to derive Lagrangian -L=Bsech , then momentum cp=Bsinh , and finally the

Hamiltonian H=Bcosh . Then a compass is used to check accuracy with the phase p-circle by making

sure it goes from (cp,H) to the (0,B)-point on top of the b-circle. The p-circle goes on to intersect the

negative cp-axis at the Doppler red shift rB=Be+ . Finally, the group g-circle in Fig. 17a-b has a chord

intersection with the p-circle that is the hyperbolic contact tangent, and it grazes the -angle normal to

the Lagrangian circle tangent in Fig. 17b. This helps to clarify geometry of H-L contact transformations

introduced in Fig. 13. The construction also applies to the space-time domain.

If Fig. 17 is in space-time, the segment -L=Bsech  is Lorentz contraction 
 
= B 1 u2 / c2 . The

H=Bcosh  and cp=Bsinh  segments are, respectively Einstien time dilation d = B / 1 u2 / c2  and

asimultaneity a=ud/c coefficients. Node-to-node or peak-to-peak gaps contract by =4/5 in Fig. 7d-e.
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ρ

ρ
ρ

ρ

φ

 −

4

4

ρ

ρ cp

H=E

ρ

ρ

(a) Geometry of relativistic transformation
      and wave based mechanics

(b)  Tangent geometry (u/c=3/5)

(c) Basic construction given u/c=45/53

u/c =3/5
u/c =1

cp =3/4

H =5/4

-L =4/5

cp =45/28

H =53/28

-L=28/45

e-ρ=1/2e-ρ=2/7

(d)   u/c=3/5

11

1 1

g-circle

p-circle

Fig. 17 Relativistic wave mechanics geometry. (a) Overview. (b-d) Details of contacting tangents.

As speed reduces in Fig. 17c-d from u/c=45/53 to u/c=3/5 or to lower values, the Lagrangian

velocity angle  and Hamiltonian rapidity  approach the velocity ratio u/c. Galilean velocity addition

rules resume. In the opposite ultra-relativistic regime,  approaches /2,  approaches , and u/c nears

unit slope or 45° in Fig. 17c. But, Galilean-like rules (2.16) apply to rapidity  at all speeds (so far).
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5. Symmetry and conservation principles

In Newtonian theory the first law or axiom is momentum conservation. Physical axioms, by

definition, have only experimental proof. Logical proof is impossible unless a theory like Newton’s

becomes sub-summed by a more general theory with finer axioms. Proof of an axiom undermines it so

it becomes a theorem or result of more basic axioms. (Or else an axiom might be disproved or reduced

to an approximate result subject to certain conditions.)

The logic of axioms yielding results or theorems in mathematical science probably goes back

two thousand years to the time of Euclid’s Elements. Also, axiomatic approaches to philosophy and

natural science show up in writings as early as that of Occam or even Aristotle, but it is not until the

European Renaissance that experiments are precise enough to support mathematical models. By the

European Enlightenment period, mathematical logic of physical science had become more effective

and productive than any preceding philosophy due in no small part to increasingly precise evidence.

As stated in the introduction, current time and frequency measurements have achieved almost

unimaginable precision. Based on this, two continuous wave (CW) axioms (1.1-2) have been used to

undermine Newtonian axioms concerning mass, energy, and momentum so they became approximate

results (3.2) and give rise to exact equivalents of Newtonian concepts in Einstein and Planck relativity

and quantum theory in (3.5). That is a modern example of an Occam razor-cut undermining axioms.

The undermining of Newton’s first axiom (momentum conservation) by the shaved CW axioms

is a good example to expose the logic involved. CW logic leads to the DeBroglie scaling law (3.5b)

that equates momentum p to wavevector k scaled in  units. A rough statement of how CW axioms

undermine or “prove” p-conservation axioms is that k-conservation is required by wave coherence and

so p= k must be conserved, as well. However, that oversimplifies a deeper nature of this logic.

The strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles

due to the Lorentz-Poincare isotropy of space-time that invokes invariance to translation T( , )  in the

vacuum. Operator T has plane wave eigenfunctions 
k , = Aei(kx t)  with eigenvalues ei(k ) .

T k , = ei(k )
k ,  (5.1a) k , T†

= k , e i(k ) (5.1b)

This also applies to 2-part or “2-particle” states K , = k1, 1 k2 , 2
 where exponents add (k, )-values of

each constituent to K=k1+k2 and = 1+ 2, and T( , ) -eigenvalues also have the form ei(K ) of (5.1).

Matrix 
K , U

K ,  of T-symmetric evolution U is zero unless K = k1 + k2 = K  and = 1 + 2 = .

K , U
K , =

K , T† ( , )UT( , )
K ,        (if UT = TU for all  and )

                      = e i(K )ei(K )
K , U

K , = 0  unless: K = K  and: =

(5.2)

T-symmetry requires total energy  E =  and total momentum  P = K be conserved for archetypical

CW states, but laboratory CW have momentum uncertainty k=1/ x due to finite beam size x and

energy uncertainty due to time limits. Newton’s 1
st
 law is verified but only as an ideal limit.
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Symmetry is to physics what religion is to politics. Both are deep and grand in principle but

roundly flaunted in practice. Both gain power quickly by overlooking details. In Sec. 3 relativistic and

quantum kinetic properties of a massive “thing” arise from those of an optical 2-CW function in one

space dimension. This means that mass shares symmetry with 2-CW light, not that mass is 2-CW light.

Massive “things” do not vanish if the light is turned off as does a tiny optical mass N /c
2 of a cavity.

Puzzling questions remain. Why do simple wave optics lead directly to general properties (3.5)

of relativity and quantum mechanics of a massive particle? How does a cavity of counter-propagating

green light waves act like it holds particles of mass M= /c
2?

The short answer to one question is that particles are waves, too, and so forced by Lorentz

symmetry to use available hyperbolic invariants 
 

2 (ck)2
= (Mc2 / )2  for dispersion. To answer the

second question entails further loss of classical innocence. In Sec. 6 Occam’s razor is again applied to

cut semi-classical CW laser fields down to single field quanta 
 

or photons. So the second short

answer is that waves are particles, too, even for optical dispersion ( 2 (ck)2
= 0) .

By many accounts, quantum theory begins with Planck’s axiom E= N . This is distinguished

from the scaling law E=s  derived in (3.5) since its scale factor s= N is not an obvious consequence of

CW phase axioms (1.1-2) that lead to (3.5). CW logic seems to require additional axioms involving

Maxwell energy E and field amplitude quantization by Planck. This is discussed shortly.

Quantization of phase variables

Waves were known to resonate at discrete wave numbers km = m
 L
2

= mk1  in rings or boxes of

fixed length L. The DeBroglie relations between k and momentum p force quantization 
 
pm = km = mp1

where momentum quantum numbers
23

 m=0, ±1, ±2,… count waves on ring L as in Bohr models. Planck

dispersion 
 
E

m
= (k

m
) (3.5) gives energy levels Em = m2E1 for sub-relativistic cases with E1 = p1

2 / 2M .

Heisenberg
24

 showed quanta pm or Em  arise from eigenvalues (literally “own-values”) of matrix

operators  p or  H  whose eigenvectors (“own-vectors”) pm or Em  may be superimposed.

= 1 E1 + 2 E2 + 3 E3 + … (5.3)

(Dirac’s bra-ket
25

 notation came later.) Allowing things to be at (or in) m places (or states) allows mean

values 
 
E = H  to range continuously from lowest quantum levels E1  to the highest Em .

 
E = H = 1

2
E1 + 2

2
E2 + 2

2
E2 + … (5.4)

For classicists, the notion that each multiple-personality-k has a probability k

2
seems, if not crazy,

then at least dicey in the sense of Einstein’s skeptical quote, “God does not play dice…” 
26

But, superposition is an idea borrowed from classical waves, and their interference makes them

ultra-sensitive to relative position and velocity, a first order sensitivity that leads elegantly to relativity

transformation (2.10) and kinematic relations (3.5) by geometry of optical phase kx- t. But, amplitude

“A” of wave (1.9) or (1.10) is set arbitrarily. It is ignored in (4.5). Without Maxwell and Planck rules,

CW amplitude or wave quantity is undefined and un-quantized. This must now be discussed.
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6. Variation and quantization of optical amplitudes

What is deduced from wave phase alone? Wave amplitude has so far been skirted for Occam economy:

“Pluralitas non est ponenda sine neccesitate” (Do not assume plurality without necessity.) CW phase axioms

(1.1-2) give Lorentz-Doppler and Planck-DeBroglie symmetry relations yet 2-CW amplitudes (1.10)

are not defined beyond assuming their 1-CW amplitudes match. Standing wave grid reference frames

in Fig. 6 and Fig. 7 are just points where amplitude is zero, that is, loci of real wave function roots.

Discussion of non-zero amplitude variation begins with counter-propagating 2-CW dynamics

involving two 1-CW amplitudes A  and A  that are unmatched. (A A )

A ei(k x t)
+ A ei(k x t)

= ei(k x t)[A ei(k x t)
+ A e i(k x t) ] (6.1a)

Half-sum mean phase rates (k , ) and half-difference means (k , ) appear here as in (1.10).

k =  (k +  k ) / 2

= ( + ) / 2
(6.1b)

k =  (k  k ) / 2

= ( ) / 2
(6.1c)

Also important is amplitude mean A =  (A +  A ) / 2  and half-difference A =  (A  A ) / 2 . Wave

motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ affects.

SWR =
(A  A )

(A +  A )
(6.2a) SWQ =

(A +  A )

(A  A )
(6.2a)

Recall mean frequency ratios for group velocity (2.7b) or its inverse that is phase velocity (2.7a).

Vgroup =
k

= c
( )

( +  )
(6.3a)   Vphase = k

= c
( + )

(  )
(6.3b)

A 2-state amplitude continuum is bounded by (A = 1, A = 0)  a pure right-moving 1-CW of SWR=1 and

a pure left-moving 1-CW (A = 0, A = 1) of SWR=-1. A 2-CW standing-wave (A =
2

  1
= A )  has SWR=0.

Wave paths for various SWR values are drawn in Fig. 18 for 600THz 2-CW pairs and in Fig. 19

for Doppler shifted 300THz and 1200THz 2-CW pairs at the same SWR values. The SWQ is the ratio of

the envelope peak (interference maximum) to the envelope valley (interference minimum), and vice

versa for SWR=1/SWQ. Single frequency 2-CW paths of nonzero-SWR in Fig. 18 do a galloping motion.

Each wave speeds up to peak speed c/SWR=c·SWQ as it first shrinks to squeeze through its envelope

minima and then slows to resting speed c·SWR as it expands to its maximum amplitude. Only at zero-

SWR do 2-CW zero-paths appear to travel at a constant group speed (6.3a) and phase speed (6.3b) as in

Fig. 18c or 19c. (For 1-CW paths or unit SWR=±1 there is just one speed ±c by axiom (1.1).)

The real and imaginary parts take turns. One gallops while the other rests and vice versa and

this occurs twice each optical period. If frequency ratio (6.3) and amplitude ratio (6.2) have opposite

signs as in Fig. 18c (±0 or ± ) and in Fig. 19e (±3/5 or ±5/3), wave zero paths will follow a right angle

staircase. 1-frequency staircase (Vgroup=0=SWR) in Fig. 18c is a Cartesian grid like Fig. 6c. 2-frequency

waves (Vgroup 0) have Minkowski grids like Fig. 7c for SWR=0 or quasi-Cartesian stair steps like Fig.

19e for Vgroup=-cSWR. To broadcast Cartesian grids to a u-frame one tunes both Vgroup and cSWR to u.
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 (a) - =0.2

- =0.8
SWR=+3/5

 (b) - =0.4

- =0.6

 (c) - =0.5

- =0.5

 (e) - =0.8

- =0.2

 (d) - =0.6

- =0.4 SWR=-1/5

SWR=0

SWR=+1/5

1-frequency
cases

ω =2c, k =2,

ω =2c, k =-2

uGROUP=0

uPHASE

SWR=-3/5
Fig. 18 Monochromatic (1-frequency)
2-CW wave space-time patterns.

 (a) - =0.2

- =0.8

 (b) - =0.4

- =0.6

(c) - =0.5

- =0.5

 (d) - =0.6,

- =0.4

 (e) - =0.8

- =0.2

 ω =4c, k =4

ω =1c, k =-1

uGROUP/c=3/5

uPHASE/c=5/3

SWR=+3/5

SWR=+1/5

SWR=0

SWR=-1/5

SWR=-3/5

2-frequency
cases

Fig. 19 Dichromatic (2-frequency)
2-CW wave space-time patterns.
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Galloping is a fundamental interference property that may be clarified by analogy with elliptic

orbits of isotropic 2D-harmonic oscillators and in particular with elliptic polarization of optical wave

amplitudes. Fig. 20 relates polarization states and wave states of Fig. 18 beginning with left (right)-

circular polarization that is analogous to a left (right)-moving wave in Fig. 20g (Fig. 20a). As sketched

in Fig. 20(b-e), galloping waves are general cases analogous to general states of elliptic polarization or

general 2DHO orbits obeying a Keplerian geometry shown in Fig. 20h. Standing waves correspond to

plane-polarization. Polarization in the x-plane of Fig. 20d corresponds to a standing cosine wave and y-

plane polarization (not shown) would correspond to a standing sine wave.

 Isotropic oscillator orbits obey Kepler’s law of constant orbital momentum. Orbit angular

velocity slows down by a factor b/a at major axes or aphelions ±a and then speeds up by a factor a/b at

minor axes or perihelions ±b just as a galloping wave, twice in each period, slows down to SWR·c and

speeds up to SWQ·c. The galloping or eccentric motion of the eccentric anomaly angle (t) in Fig. 20h

is a projection of a uniformly rotating mean anomaly (phase angle ·t) of the isotropic oscillator, and

this gives a Keplarian relation of the two angles seen in the figure.

tan (t) =
b

a
tan t (6.4a)

The eccentric anomaly time derivative of  (angular velocity) gallops between  ·b/a and  ·a/b.

 

=
d

dt
=

b

a

sec2 t

sec2
=

b / a

cos2 t + (b / a)2 sin2 t
=

b / a  for: t = 0,  ,  2 ...

a / b   t = / 2,  3 / 2,...
(6.4b)

The product of angular moment r2 and 
 

is orbital momentum, a constant proportional to ellipse area.

r2 d

dt
= constant = (a2 cos2 t + b2 sin2 t)

d

dt
= ab

Consider galloping wave zeros of a monochromatic wave (6.1a) having SWQ (6.2b).

0 = Re x,t( ) = Re A e
i k0 x 0t( )

+ A e
i k0 x 0t( )   where: = 0 = = ck0 = ck

0 = A cos k0x cos 0t + sin k0x sin 0t + A cos k0x cos 0t sin k0x sin 0t

A + A( ) cos k0x cos 0t = A A( ) sin k0x sin 0t

Space k0x varies with time 0t in the same way that eccentric anomaly varies in (6.4a).

tan k0x = SWQ cot 0t = SWQ tan 0 t   where: 0 t = 0t / 2 (6.5a)

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.

dx

dt
= c SWQ

sec2
0 t

sec2 k0x
=

c SWQ

cos2
0 t + SWQ2 sin2

0 t
=

c SWQ  for: t = 0,  ,  2 ...

c SWR   t = / 2,  3 / 2,...
(6.5b)

Single frequency 2-CW paths in Fig. 18 have a constant product of instantaneous wave velocity

and wave amplitude analogous to the constant product of orbital velocity and radius. So vacuum

optical amplitude and phase motion obey rules of Kepler and (Sec. 2) Galileo. That these 15
th

 century

geometric relations underlie basic wave physics has not been fully appreciated.
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(i) Kepler anomaly relations

Fig. 20 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 18. (h-i) Kepler anomalies.
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Maxwell amplitudes and energy

Classical Maxwell field amplitudes E = A  and B = A  are derivatives of vector potential A.

Maxwell energy U per volume V or total energy U·V is a sum of amplitude squares E•E and c2
B•B.

U V = 0
2

E • E +
1

2μ0
B • B V μ0 0 =

1

c2
(6.7)

Fourier analysis of A into amplitudes ak and ak
* leads to a harmonic oscillator sum over each plane CW

mode frequency
k
= ±c | k

m
| , km-vector allowed by a large-cavity, and polarization =x,y normal to km.

U V = 2 0V k
2ak

* ak (6.8)

Harmonic oscillator frequency is independent of amplitude. This is consistent with CW phase axiom

(1.1) and dispersion relations (3.5) derived from 2-CW superposition, but such a simple axiom seems

unable to derive the Maxwell vector amplitude structure of 2-dimensional polarization normal to km of

each wave mode or even to establish that its wave variables A, B, E, or km are, in fact, 3D vectors.

The CW axiom (1.1) gives what is effectively a 2-dimensional harmonic oscillator (2DHO)

with two complex amplitudes (aL, aR) for the two longitudinal propagation directions, but each comes

with two transverse polarization amplitudes (ax, ay) that describe the second 2DHO in Maxwell light,

namely polarization ellipsometry used in Fig. 20 as an analogy for propagation left-and-right along z.

Quantized optical fields

Mode amplitude ak or ak
*  in classical electromagnetic energy k

2ak
*ak are replaced by oscillator

operators 
 
ak or 

 
ak

† for a field Hamiltonian with explicit linear frequency dependence of Planck.

 
H = k (ak

†ak ) H = k Nk (6.9)

The H-eigenstates 
 
N1N2 Nk for exactly quantized photon numbers 

 
ak

†
ak = Nk  fix a definite energy

value 
 k

N
k

for each mode-km but has quite uncertain field phase. Average energy of one mode is

 

Uk V = 2 0V Ek • Ek = k Nk (6.10a)

where a 1-CW-1-photon E-field and vector potential A-amplitude is as follows.

 

Ek
Nk =1

=
k

2 0V
(6.10b)

 

Ak
Nk =1

=
2 0 kV

(6.10c)

Field quantization is called 2
nd

-quantization to distinguish 1
st
-quantization km mode numbers m,

used for classical light, from “purely quantum” photon numbers n = Nkm
for wave amplitude. This may

be a prejudice that waves (particles) are usual (unusual) for light but unusual (usual) for matter.

Amplitudes involve relations (6.7) to (6.10) that are more complex than axioms (1.1-2) for

wave phase. While Maxwell-Planck relations lack the simplicity of the latter, they do derive the linear

dispersion (1.1) by Fourier transform of the Maxwell wave equations, and they show optical wave

amplitude has an internal symmetry analogous to that of wave frequency. The following discussion of

this analogy involves a Doppler shift of wave amplitude with invariance or covariance of photon
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number Nk and standing wave ratio (SWR) (6.5). Also, one begins to see how Born quantum probability

formulas n = *  arise and are consistent with Dirac amplitude covariance.

Relativistic 1-CW covariance of Poynting flux

Maxwell-Planck energy density U(Joule/m
3
) in (6.10a) leads to a related Poynting flux S[Joule/(m

2
·s)].

 

S = E B = Uk ck̂ = 2 0c Ek • Ek k̂ = knk k̂    where: nk = cNk / V m 2s 1 (6.11)

Flux S contains two frequency factors, the fundamental laser frequency k and the photon count rate nk

per[ (m
2
·s)]. Frequency k is quantum quality of a laser beam and rate nk is its quantum quantity. The

product k·nk is Poynting flux. Rate nk and frequency k both Doppler shift by an exponential e±  of

rapidity  in (2.16). So do 1-CW fields E±k as may be shown by Lorentz transforming them directly.

E
+k = e+ E

+k (6.12a) E k = e E k (6.12b)

Thus both electric field polarization E-amplitudes Ex an Ey of a 1-CW field undergo the same

e±  Doppler shift that the frequency k or wavevector k experience. If E in (6.11) scaled by 1-photon

factor (6.10) a probability wave  follows whose square  is a volume photon count N/(m
3
).

k=

 

2 0V

k
Ek  k* k = Nk = Nk = nk

V

c
(6.13a)

Or, a flux probability wave  is defined so its square   is an expected flux photon count n/(m
2
·s).

 

k =
2 0c

k
Ek k * k = nk = nk =

c

V
Nk (6.13b)

Due to the 1 / k scaling of (6.13) the Doppler factor of 
±k drops an e± /2 factor from Ek in (6.12).

 Lz ( ) =
+k

k

=
e+ /2 0

0 e /2
+k

k

= e z /2
(6.14)

This is a starting point for the spinor form of Lorentz transformation for Dirac amplitudes.

 Relativistic 2-CW invariance of cavity quanta

Mean photon number Nk of a 2-CW cavity mode, unlike a 1-CW flux quantum nk, is invariant to cavity

speed. By analogy, 2-CW modes have variant group-phase velocity (Vgroup, Vphase), energy-momentum

( ck, ), but invariant mean velocity c = VgroupVphase and frequency =
+k k =

2 c2k2 .

Vphase

c
=

+k k

+k + k
 (6.15a)

Vgroup

c
=

+k k

+k + k
(6.15b)

Linear dispersion ±k=±ck and (1.11) or (2.7) are used. Note the analogy to SWR relations (6.2).

SWR =
E
+k E k

E
+k + E k

(6.15c) SWQ =
E
+k + E k

E
+k E k

(6.15d)

Each ratio (6.15) is a wave velocity that Doppler-transforms like relativistic (non-Galilean) velocity.

SWR =
SWR + u / c

1+ SWR u / c
(6.16a)

Vm
c

=
Vm / c + u / c

1+ (Vm / c) (u / c)
(6.16b)
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Velocity uAB/c=tanh AB is a hyperbolic sum since rapidity is a simple sum AB= A+ B by (2.16).

uAB
c

= tanh AB = tanh( A + B ) =
tanh A + tanh B

1+ tanh A tanh B
=

uA / c + uB / c

1+ uAuB / c2
(6.17)

The energy and momentum flux values are found for counter-k 2-CW beam functions 
 

.

 
k = ei(k x t)

+ ei(k x t)

Lab 1-CW flux number expectation values | k |2= nk  give 2-CW flux expectations in lab. 

 

E = = n   + n =
2
+

2

cp = ck = ck n + ck n =
2 2

The relation (6.13b) of quantum field k  and classical Maxwell Ek -field expectation is used.

 

E =
2
+

2
= 2 0c E

2
+ E

2
     (6.18a)

 

cp =
2 2

= 2 0c E
2

E
2

(6.18b)

Values cp and E  lie on an invariant hyperbola of constant geometric means N or | E | 2
.

E
2

cp
2
= 2c 0( )

2
E

2
+ E

2
2

E
2

E
2

2

= 2c 0( )
2

4 E
2

E
2

 

E
2

cp
2
= 4 2c 0 E

2
2c 0 E

2
= 4 n( )  n( ) (6.19)

 
E

2
cp

2
 =                  2c 0 2E

2
              =      ( ) 2n( ) (6.20a)

The geometric mean frequency , mean quantum number n , and mean field | E |  are defined.

 =  (6.20b)  n = n n (6.20c) | E |= E E (6.20d)

Doppler relations imply Lorentz invariance for the mean number n  and for the mean frequency

 as well as their geometric mean n that is 2c 0 times the mean field | E | and applies to a general 2-

CW beam function . A factor 2 on | 2E |  or 2n  in (6.20a) is consistent with 1-photon 2-CW states of

balanced number n = n = n =2
1 whose 1-photon Planck energy expectation is E= .

Ideal cavities balance field E = E = E , frequency = = , and number. A general

beam with , n n , and E E  has a center-of-momentum CoM-frame of zero flux

where ECoM
= ECoM  by (6.18b), an isochromatic IsoC-frame with IsoC

=
IsoC , and an IsoN-frame

with balanced photon count N IsoN
= N IsoN . Frame speeds u  may be distinct as sketched in Fig. 21.

uCoM

c
=

E E

E + E
(6.21a)

uIsoC

c
=

+
=

V Group

c
(6.21b)

uIsoN

c
=

n n

n + n
(6.21c)

Flux invariant | E |  is maximized by balanced amplitude E = E but is zero if E  or E  is zero.

Thus optical rest mass (6.20a) decreases continuously as a 2-CW beam is unbalanced toward 1-CW.
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Fig. 21. Cavity 2-CW modes. (a) Invariant “mass” hyperbolas. (b) COM frame. (c) ISOC frame.

It is argued in Sec. 3 that mass is a coherent 2-CW interference effect that is not possible for a

1-CW beam. If we replace Planck energy relation = Nh  by a Maslov form = (N + )h it has a tiny

zero-point energy minimum h . Does a tiny mass h / c2  exist for 1-CW and even 0-CW beams in

all frames in spite of the incoherence of such zero-point fluctuations? Such a presence in (6.20) may be

ruled out if the speed-of-light axiom (1.1) is exact. There is much yet to learn about zero-point effects

in quantum electrodynamics and cosmology.
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Photon-N vs Coherent- -states

Optical fields A or E have quantum expectation values of field operators based on mode amplitudes

ak or ak
*  in classical energy k

2ak
*ak . Each ak or ak

*  is replaced by oscillator boson operator 
 
ak or 

 
ak

† in

a quantum field Hamiltonian 
  
H =

k
(a

k
†
a

k
+ ) whose eigenstates 

 
N1N2 Nk have exact quantized

photon numbers
 

ak
†
ak = Nk  for each mode-km.

Each mode phase quanta m and amplitude quanta Nm are invariant constants that define another

hyperbola with Einstein-Planck proper frequency
 

N ,m = N
m m  as sketched in Fig. 21a and Fig. 22. The

problem is that absolute certainty of photon number Nm implies totally uncertain field phase just as

absolutely certain km of 1-CW symmetry implies totally uncertain position in space and time.

Space-time position coordinates were defined by taking 1-CW combinations to make 2-CW

coordinates of Fig. 3b, Fig. 6c, or Fig. 7c. Ultimately an n-CW pulse-wave (PW) of Fig. 2, Fig. 3a, Fig.

6d, or Fig. 7d was localized with as low a space-time uncertainty  as desired but it acquires per-space

uncertainty or bandwidth  according to Fourier-Heisenberg relation  ·  >1.

So also must photon-number states be combined if amplitude and phase uncertainty are to be

reduced to the point where wave space-time coordinates can emerge. Such combinations are known as

coherent states or -states of harmonic oscillation. Sharper wave zeros require fuzzier hyperbolas.

Fuzzy hyperbolas vs. fuzzy coordinates

Model micro-laser states are coherent states =
N N

N made of single-mode eigenstates

 
N = (a1

† )N 0 with amplitudes 
N
=

Ne
2 /2 / N ! . Variable = x + ip = ei  is average mode phase, and

(x = Re , p = Im ) , rescaled by a quantum field factor f, are field averages 
 

A , A = E( ) .

 

A = A = + *( ) f = + *( )
2 0 V

(6.22)

Amplitude factor f makes Planck’s 
 E = N  equal Maxwell field energy E = U V .

 
U V = 2 0

2V A2
=

2
= N (6.23)

A fundamental laser mode in a 0.25μm cubic cavity (See E-wave sketched in one strip of Fig.

6c.) has green light with 
 = 4 10 19 Joule  or 2.5eV per photon. The average photon number

N =
2
= 1010  models a laser with mean energy 

 
E = U V = N = 4.0 nanoJ  in a volume V = (4

1 μm)3 .

Photon number uncertainty N = = 105 varies inversely to phase uncertainty 
 = / 3 10 5 .

Amplitude expectation value N A N  is zero for N states due to incoherence of phase, but

number value 
 

N a
k
†
a

k
N = N  is exact as is proper frequency N  due to the phase factor (e i t )N of

 
(a1

† )N . A volume V with (N = 1010 ) -photons has energy
 E = N  or mass-equivalent M = E / c2

= 10 25 kg

on a hyperbola 1010 quanta above the N=1 hyperbola. A coherent-state = 105 has a mass of about

M = 10 25 kg  with uncertainty M = 10 30 kg  so its phase uncertainty 3 10 5  is low enough to plot grids like

Fig. 6c or Fig. 23a. A low-  state (Fig. 23c) has too few photon counts-per-grid to plot sharply. Photon

eigenstate N  is a wash even for high-N since N = 0  has total (2 ) phase uncertainty. (Fig. 23d)
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Fig. 22 Optical cavity energy hyperbolas for mode number n=1-3 and photon number N=0, 1, 2,....

(a) |α=105〉 (b) |α=103〉 (c) |α=101〉 (d) |n=1010〉
Quantum field coherent α-states Photon number n-states

Fig. 23 Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).
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Deeper symmetry axioms

Discussion of relativity and quantum theory of wave amplitude requires further details. This

includes Dirac’s extraordinary theory that 2-CW light of certain frequencies in a vacuum may create

“real” matter that does not vanish when the light is turned off. For example, we know that two 0.51MeV

-ray photons of frequency e=mec
2
/  may create an electron and positron “hole” that form positronium

e + e  pairs. Also, 0.94GeV -rays with p=mpc
2
/  may create proton-anti-proton p + p  pairs, and so on.

Dirac creation processes raise questions, “What “cavity” traps 0.51MeV -pairs into stable e + e

pairs?” The discussion so far has only begun to define 2-CW symmetry properties by phase rates in

per-spacetime (K, )-quantum variables. Conservation (5.2) of these kinetic (K, )-values means that

the e + e or p + p pairs have the same (K, )-values as the 2-CW light that “creates” them, yet some other

less familiar internal lepton or baryon quantum variables may change as light becomes “trapped.” This

is beyond the scope of this discussion, and indeed, still largely beyond what is presently known.

7. Photo-emission

In the meantime it is fair to consider an electron, proton, or atom of mass M as having the same

kinetic symmetry as a 2-CW light beam of frequency =Mc
2
/ . This provides a simplified geometrical

construction for recoil shifts in atomic or nuclear 1-photon-emission, 1-photon-absorption, or 2-photon

Raman-Compton scattering processes by relating them to Doppler shifts on a (k, )-baseball diamond of

a virtual 2-CW photon symmetry hidden in any atom or particle.

Feynman recalls trying to answer his father’s question, “Where is a photon before an atom

emits it?” A pricey MIT education seemed not up to this question.
27

 Let us try to answer Feynman’s

father’s query in a quantitative way using a 2-CW photon model of an atom that emits some of its

“inner light” allowing a simpler Compton kinetics that uses the diamond geometry of Fig. 24.

Using the baseball diamonds of Fig. 6 or 7, we say atoms have the symmetry of 2-photon states

represented by 2
nd

 base K2 . In the lower half of Fig. 24a, a 1
st
 base K1= ( , )  and 3

rd
 base K3= ( , )

sum to an atom’s 2
nd

 base K2= (0, 2 )  on a hyperbola of mass MQ at Q.

 
M

Q
= 2 / c2 (7.1)

The pitcher’s mound P represents a 1-photon momentum-energy expectation value EP at K
p
= (1 / 2)K2

 
 
E

P
= / c2  (7.2)

It is like Fig. 10 or Fig. 12, but Q is a 2-photon state of energy MQ=2EP.

In Fig. 24a an emitted photon QP  is imagined being “cut” from 3
rd

 base so 3 = shrinks by

what we will call
28

 a father-Feynman factor ff as 3
rd

 base alone loses the outgoing QP photon energy.

3 = ff = 3 QP  (7.3)

If 1
st
 base stays at its old value ( 1 = = 1 )  the 2

nd
 base moves from Q on its initial 2 -hyperbola to P

on its final 2  -hyperbola. Its new proper frequency  is a geometric mean of 3
rd

 and 1
st
 as in Fig. 10.
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2 = 2 3 1 = 2 ff (7.4a) 3 = f = ff (7.4b) 1 = f 1
= f 1 f = 1  (7.4c)
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Fig. 24 Optical cavity model of (a) Emission, (b) Absorption, and (c) Compton scattering
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The new 3
rd

 base is a Feynman
29

redshift f ff  of the new mean  and a father-Feynamn shift ff of

the old bases values 3 = = 1 = 1  that, in turn, are each an inverse-shift f -1 of the new mean .

The ff-shift is a product of two f-shifts ff=f 
2. This is more than just tricky notation. It is due to the group

multiplication rule (2.16) of f = b3 2 and an equal f = b2 1 to give composite ff = b3 1 = b3 2 b2 1 = f 2 .

In Fig. 24a old 1
st
 base and new 3

rd
 base span a diamond of rapidity  like the one in Fig. 10b

where e =
2
1 . That redshift / = f is the final-to-initial rest mass ratio ( f =

2
1)  used in Fig. 24a-c.

e = f ff = / = MP / MQ (7.5a)

We may relate (7.5a) to a “rocket science” relation Vf = Ve ln (MF /ME) for final-velocity Vf vs. specific-

impulse Ve (velocity of exhaust). This matches (7.5a) for non-relativistic speeds where ~u/c.

 
= ln(MQ / MP )

u c
u = c ln(MQ / MP ) (7.5b)

The excited rest mass MQ is like a fully fueled rocket mass MF, and the lower rest mass MP is like an

empty rocket mass ME, and the velocity of exhaust Ve is the speed c of the ejected photon. It might

surprise a rocket scientist that (7.5) results from two CW c-axioms (1.1-2) and that it also works for

relativistic sub-atomic rockets! When they are assembled, this span of ideas from Euclid to Einstein to

Evenson represent an elegant and powerful train of experiment and logic.

Photo-absorption and Compton effects

The factor ff = 4
1 , chosen in Fig. 24a, cuts a fraction 1 ff = 4

3  off the 3
rd

 base photon 3 = to

emit QP = 4
3 and reduces mass M2 by factor f = ff = 2

1  to M1. Doppler factor f -1=2=e  gives an atomic

recoil boost of u = 5
3c . (Recall a double Doppler gives frame velocity u = 5

3c  in Fig. 7.)

Mass M1 gets the same boost by absorbing PQ = 2
3 as it jumps from P up to Q in Fig. 24b, an

inverse to the QP “cut” that falls from Q down to P in Fig. 24a. A “paste” of PQ = 2
3  onto the 1

st

baseline in Fig. 24b ups M1 to M2 on -axis P Q  in Fig. 24c. Final -frame shift is b=e  =2 of rapidity

= ln 2  for either process. Emission Q P is the final “cut” in a Compton “paste-and-cut” P Q P

process with the Feynman diagram in Fig. 25c. Its segments form an OPQ P O  “kite” in Fig. 24c that

is bent from a symmetric kite OP QP O  by the boost = ln 2  of the main kite OQ-axis relative to either

of its wings OP  or OP . Any mass jump M
P

M
Q  causes a boost = ± ln

MP

MQ  as per (7.5).

Both “paste-and-cut” (P Q P )  and reverse “cut-and-paste” (P O P )  processes in Fig.

25 entail total recoil boost 2 = ln 22  from the lab axis to an axis of the Compton scattered atom

in Fig. 24c. The latter first “cuts” down to point O  on a 2 -hyperbola by emitting photon PO =8
3

before absorbing the O P = 2
3

= PQ  photon that comes first in the former sequence.

An inverse Compton process (Q P Q ) emits photon QP =4
3 (as in Fig.18a) then absorbs

photon P Q = 3 that moves it from rapidity  on hyperbola- to rapidity 2  on hyperbola 2 at point

Q (upper right of Fig. 24c). Here a fixed mass
 
M2 = 2 emits 4

3  to gain speed (c
u
= 5

3) by reducing its

mass to
 
M1 =  then recovers it all by absorbing 3  to go even faster (c

u
= 1 7

15) .
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Photon K-vectors for any Compton process between 2:1-rest mass hyperbolas make a -warped

baseball diamond with =ln2 according to (7.5) as shown in Fig. 24c and Fig. 25a. Like a 2:1-Doppler

diamond in Fig. 10b, it has an aspect ratio that is twice its blue-shift b=e  =2, that is 2e  =4. Unlike the

basic diamond in Fig. 10b, the one in Fig. 25a is suspended on K-vectors of initial, intermediate, and

final atomic states that form the Feynman graphs in Fig. 25b-c. By drawing the vectors and graphs in

the center of momentum (COM) frame Fig. 25d-f, an original diamond like Fig. 6a-b is made.

A 2:1-rest mass drop shows geometry more clearly than a realistic ratio 10
10

:10
10

-1 for an atomic

transition that is about 10
-10 of rest mass. Atomic rest-energy level ratios Em: Eh are close to unity and

fortunately so for our health! Harmonic levels with integral m:h ratios used in Fig. 24 apply to optical-

cavity models but m and h are small integers only for special spectra like Rydberg or rotor transitions.
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Fig. 25 Compton scattering. (a) Vector sums on mass hyperbolas of low 
 
, medium m , and high h. (b-c) Feynman

graphs. (d) Center of Momentum (COM) vector sums. (e-f) COM Feynman graphs.

Compton-Doppler staircase

In going from higher hyperbola h  to middle m the lab recoil shift is fhm = e hm = h
m  by (7.5),

and its emitted frequency h m  is the altitude of a kite triangle, like P QP in Fig. 24c, given as follows.

hm = (1 fhm
2)

h

2
=

h2 m2

2h
= m sinh hm (7.6)

The example in Fig. 24a has QP = 4
3

= 2,1 . Doppler shifts of 2,1by f2,1 = 2
1  form a geometric series

 
( , 32

3 , 16
3 , 8

3, 4
3, 2

3, 3,6,12, )  of steps on a Compton staircase PQ P Q ... between (2:1)-levels 2 and1
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in Fig. 24c. For any rational level ratio e hm = m
h , each dilation factor

hm
, recoil

hm
, or ratio hm /  is a

rational ratio, too, and the Pythagorean sum 1 =
hm

2
+

hm
2  belongs to a rational triangle, e.g.,1 =

52
32

+
52
42

.

  hm =
uhm

c
= tanh hm =

h2 m2

h2
+ m2

(7.7a)

hm = cosh hm =
h2

+ m2

2mh
(7.7b)  sinh hm =

h2 m2

2mh
(7.7c)

Recoil trims emitted hm  below =|h-m|  by a factor (h+m)/2h while absorption mh  costs more than 

by a factor (h+m)/2m. Newtonian recoil KE
h

M
h
u2 / 2  is a circle of radius M

h
c2  in Fig. 24, so even low-u

recoil costs a little. Photons, like money-changing tourists, get nicked coming and going.

An absorption (m<h) frequency m h =
IN is greater than emission h m  by a factor fmh = m

h . A

Compton OUT due to IN  is less than hm  by the inverse factor fmh
1
= fhm = h

m . Hence a Compton

output OUT  is less than its input IN by the Doppler ratio-square ff = fhm
2

= ( h
m )2  as shown before.

IN
= mh = m

h
hm  , OUT

= h
m

h m = ( h
m )2 IN (7.8)

Compton processes in Fig. 25 start on middle m = m  hyperbola to do a 2-photon bounce off a lower

 
=  or a higher 

h
= h hyperbola. An intermediate “bouncer” is said to be a virtual level if its 

or h values are integration variables being summed. A process (m h m) or 
 
(m m) is said to be

a resonant Compton process if an h-state or -state exists. Whether numbers m, h , and  are integers in

a cavity model or real values for an atomic model, the results (7.6), (7.7), and (7.8) apply in any case.

Inverse frequencies 
 

1
= (kc) 1

= (2 c) 1 / c  give the famous Compton wavelength sum rule.

( OUT ) 1
= ( IN ) 1

+ 2(m ) 1  , or:  
 

OUT
=

IN
+ 2 C  where: 

 

C =
c

m
=

M mc
.

Compton radius
 C C / 2 is a minimum cavity radius with a frequency equal to the “zwitterbevegun”

of mass Mm. As input 
 

IN  reflects from an Mm-cavity it picks up diameter
 
2 C to become 

 
OUT . Size 

 
OUT

depends on mass Mm of level-m, not on Mh or M  of higher level-h or lower level-  that bounces level-m.

Compton radius is a curious measure of mass size. Larger mass M m has a smaller 
 C

size that recoils

less and reflects photons elastically as one expects in classical wave optics where light is “light.”

A geometric f p -series
 

(… f 2 , f 1,1, f 1, f 2
…) of levels also has a geometric series f p f 2 1

2  of

transitions. This gives Compton “nets” such as the ( f = 2) -net in Fig. 26a or a finer ( f = 2) -net in Fig.

26b. Finer fractions (f 1) give smaller jumps and acceleration that is more continuous and constant.

An acceleration of space-time frames by geometric or exponential frequency chirping is

described below. The space-time grids have a geometric spacing that is like the Compton nets in Fig.

26 below. The space-time grids are at right angles to the per-space-time nets to which they are

equivalent. They provide an optical realization of Einstein’s famous constant-g elevators.
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Fig. 26 Compton nets are congruent Compton staircases of transitions. (a) f=2:1 (b) f=  2 :1

x

 is seen along
 invariant
 hyperbola(x, ct)

(x→+x←)/2= x = x0 cosh(ρ)

(x→-x←)/2= ct = x0 sinh(ρ)

Only green
 ω0-light

ct

(b) Constant acceleration

At x←=x+ct= x0 e+ρ�

frequency is

 ω← =ω0 e−ρ

At x→=x-ct= x0 e−ρ�

frequency is

 ω→ =ω0 e+ρ

x

ct (x, ct)

(a) Varying acceleration

At x→=x-ct

frequency is

 ω→ =ω0 e+ρ

At x←=x+ct

frequency is

 ω← =ω0 e−ρ

Fig. 27 Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g
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Chirping and Einstein elevators

A spacetime version of Compton nets are curved coordinates for accelerated Einstein elevators

and this helps to visualize equivalence principles for general relativity.
30

 Plots in Fig. 27 and Fig. 28

show waves from chirping tunable lasers forming colorful renderings of hyper-net coordinates.

A previous Fig. 7c plotted an atom (x ,ct )-view of it running head-on at rapidity  into a green

-beam that is blue ( e+ ) shifted while the receding laser appears red ( e ) shifted. The laser (x, ct)-

grid then appears as a -tipped Minkowski grid. If instead the lasers had been tuned to frequencies

e  and e+ , respectively, the (u=ctanh )-moving atom could see both beams to be green light

waves interfering to make a square ( =0) Cartesian (x, ct)-grid like Fig. 6c. (Amplitude would have to

be tuned along with frequency to squelch the wave galloping described after Fig. 19 and Fig. 20.)

Varying tuning parameter  of the lasers changes local grid rapidity  at the beams’ spacetime

intersection as sketched in Fig. 27a-b. This produces a curved space-time coordinate system of paths

with rapidity changing just so both beams end up always the same color on any given trajectory.

Each trajectory plotted in Fig. 28 has its own constant proper acceleration g and local color .

A mass M following such a x(t)-path has a K that follows its M-hyperbola in Fig. 26. The lasers each

send waves that meet at each trajectory point x(t) and paint a local interference grid of varying rapidity

 on a trajectory x(t) of varying velocity u(t) given by (6a) and sketched in Fig. 27a.

u =
dx

dt
= ctanh (7.9)

Setting x =0 and t =  in (2.21) relates proper time interval d  to lab dt . This gives x(t) by -integrals.
dt

d
= cosh (7.10a) 

dx

d
=

dx

dt

dt

d
= c tanh cosh = c sinh (7.10b)

 ct = c cosh   d    (7.10c) x = c sinh   d   (7.10d)

Path x(t) depends on ( ) variation in proper . Linear rate u~g  or =g /c gives a hyperbolic path in Fig.

27b of fixed proper acceleration g and a family of concentric paths of different g in Fig. 28.

ct = c cosh
g

c

 

 
 

 

 
   d  =

c2

g
sinh

g

c

 

 
 

 

 
  (41a) x = c sinh

g

c

 

 
 

 

 
   d  =

c 2

g
cosh

g

c

 

 
 

 

 
 (7.11b)

Paths closer to the left hand blue-chirping laser have a higher g than flatter ones nearer the red-chirping

right hand source.  -skewed baseball diamonds of PW and CW paths in lower Fig. 28 are spaced

geometrically along the x-axis of a spaceship at a moment when its lab-relative rapidity is =0.2.

Geometric e± -variation (7.11) of wave and coordinate spacing is due to a left-hand laser’s

right-moving wave of frequency = 0e
+  on light cone x =x-ct=x0e  and a right-hand laser’s left-

moving wave of frequency = 0e  on light cone x =x+ct=x0e
+ . Wave interference does the rest.

Initial ( =0) position of hyperbola 0 is 0=x0=c
2
/g0. Each hyperbola has different but fixed

location , color , and artificial gravity g that, by (7.11), are proper invariants of each path.

 x2
-(ct)

2
 = 

2 , where: =c
2
/g (7.12)
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l = 0.4

l = 0.4

Trailer has received  10
    blue waves.

Trailer has received  5
    blue waves.

Coherent waves make space-time coordinates of accelerating ship & trailer(s)
                            for region inside asymptotic“event horizon”

Lab view of
Lorentz
contracting
separation

Ship view of
invariant
proper
separation
l = 0.4

Ship has received  5
  green waves.

Geometrical Chirps Gives Accelerated  Minkowski Grids

Ship has received  10
 green waves.

Interfering light beams make Minkowski diamonds

Bouncing light
 Doppler shifts

from moving
 mirror       .

  BLUE-
   CHIRP
    spectrum
     results if
       mirror
        moves
         IN

        RED-
      CHIRP
    spectrum
    results if
         mirror
           moves
              OUT

x or l-axis for rapidity r=0.2

TIME

TIME

Bouncing light
 Doppler shifts

from moving
 mirror       .

Fig. 28 Accelerated reference frames and their trajectories painted by chirped coherent light

Frequency  and acceleration g vary inversely with the path’s proper location  relative to origin.

   =  c
2
/g = 0 c

2
/g0 = const. (7.13)

Rapidity =g /c in (7.11) has proper time be a product of hyperbolic radius  in (7.12) and “angle” .

  c  =  c
2
/g =       (7.14)

This is analogous to a familiar circular arc length formula s = r . Both have a singular center.

The less familiar hyperbolic center (x,ct)=(0,0) here begins an elementary event horizon. The

blue-chirp laser would need infinite frequency 0e
+  at origin where ct=e  goes to zero, so it gives up

before t=0. After t=0, light from the laser to any path S or T given by (7.11) never arrives. Fig. 28

shows paths of a spaceship S and a “trailer” T trailing by invariant length ST= (S)- (T) on an x-axis of

rapidity  through origin (x,ct)=(0,0). S and T always have the same velocity (7.9) relative to the lab,

maintain proper interval
 ST , but trailer T feels greater g. Lower parts of a rigid rod accelerate more,

and this gives the lab-observed Lorentz length-contraction indicated at the top of Fig. 28.
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In a Newtonian paradigm, asymmetric acceleration seems paradoxical, but if waves make a

coordinate frame, asymmetry is a consequence of the DeBroglie relation (3.5b) between k-vector and

momentum. Accelerating frames require shortening wavelength and this crowds waves.

Wave properties also manifest the accelerated frames’ upstairs-downstairs disparity in proper

time  (“later” upstairs by (7.14)) and shift in frequency  (lower or “red shifted” upstairs by (7.13)).

Along nodal (white) lines that are the ship-trailer x-axis for a momentary rapidity , wave phase is seen

to be some constant k = /2. The Einstein equivalence of gravity to an accelerated elevator is

manifested by a gravitational red shift and an increase of clock rates in the upstairs regions of a field.

A quantized version of Fig. 28 would be an atom with a transition at I, undergoing a sequential

resonant Compton scattering of exponentially chirped photons I, e
±

I, e
±2

I, e
±3

I,… between the

same pair of hyperbolas in Fig. 28. The atom sees the same color and feels the same recoil rapidity at

each step in the quantum version of constant acceleration.

Constant velocity gives constant acceleration

This leads one to ask if chirped light might be used for atomic or molecular acceleration.

Logarithmic dependence =ln b of rapidity on Doppler b favors ultra-precise low energy acceleration,

more appropriate for nanotechnology than high energy acceleration with its extreme bandwidth.

The flip symmetry between two sides of a lightcone suggests optical cavities with a geometric

chirp. If you flip the diamond sequence in lower Fig. 28 across the light cone to the sides of Fig. 28

you get spacetime light paths bouncing between mirrors moving relative to each other. If mirrors close,

trapped light blue-chirps exponentially as on the right side in Fig. 28. It red-chirps if the two mirrors

separate as they do on the left side of Fig. 28. Together, a desired e
±n

 spectrum is made simply by

translating one etalon cavity at constant velocity relative to another stationary cavity that is enclosed

by the translating one.

In this way, light generated by mirrors of constant velocity provides the spectrum needed to

make an interference net of constant acceleration. Coherent acceleration like Fig. 28 (but slower)

might be done with great precision. Length metrology involves waves, too!

Wave geometry ought to make us more skeptical of the coordinate boxes and manifolds that

have been a paradigm for centuries. A common image is the Newton-Descartes empty-box at some

absolute time existing whether or not it contains any “particles.” Some learn to picture spacetime

coordinates as a giant metal frame of clocks like Fig. 9 in Taylor and Wheeler’s
31

 relativity text. That

figure is more like a parody of common views of spacetime manifolds that remain with us to this day.

Such a monstrosity of a framework is decidedly nonexistent and non-operational.

 In contrast, a wave frame like Fig. 6, 7, and 22 is physical metrological coordinate system

whose geometry and logic is both revealing and real. The things being coordinated (waves) come with
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their own coordinates and theorems built in. Einstein general theory of relativity trumped Newton’s

box by showing how it is affected (curved) by any energy or mass it holds. Quantum theory seems to

go a step further by indicating that this box and its contents may be one and the same thing.

Pair creation and quantum frames.

Dirac, before others, realized that per-spacetime has the symmetry of spacetime. Past and future

(time-reversal) symmetry demands negative frequency as well as positive. In order to visualize Dirac’s

pair-creation process he extends the playing field to back-to-back baseball-diamonds with four nets of

invariant hyperbolas. Examples of pair-creation are sketched in Fig. 29 as seen from two different

reference frames. Pair creation-destruction is then seen a strange sort of Compton process.

The Feynman graph of Compton scattering in Fig. 25c-d is turned on its side in Fig. 29 so it

may start and end on different branches of the m-hyperbola corresponding to mass ±m. Two photons,

whose energy sum equals the energy gap 2mc
2
, appear to bounce off intermediate hyperbolas in Fig. 29

that are conjugate hyperbolas defining group wavevectors Kg in Fig. 6 or 7. Such dispersion is said to

belong to instanton or tachyon waves of imaginary frequency ±i
 
μ that entails a huge damping factor

 e
mc2 /  that proscribes their direct observation. They are said to be in the virtual or intermediate realm.

ck

ω

ck

-mc2/h

+mc2/h

Fig. 29 Dirac matter-antimatter dispersion relations and pair-creation-destruction processes.

Dirac’s is the first quantum theory to fully incorporate relativity. It introduces dual anti-worlds,

in which all three mass definitions (3.6), (3.7), and (3.9) have negative values, but leaves many

questions about their physical meaning. Analogies between the (2 e + e )  process in Fig. 29 and

exciton formation in the band theory of solids, shed some light on the physics. However, the exciton

process is a straight-up 1-photon process whose momentum is tiny compared to the energy jump, and it

lacks the world-anti-world symmetry of the Dirac exciton in which both the electron and an anti-

electron have the same group velocity but opposite momentum. The Dirac model has duality of

reversed energy (frequency), momentum (k-vector), space, and time that is quite extraordinary.
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A number of implications of Dirac’s theory have been mostly ignored. Many are unwilling to

abandon vestigial concepts associated with absolute classical frames or “boxes.” However, quantum

frames are like all things quantum mechanical and have an intrinsic relativity associated with their

wavelike interference. Quantum frames, as they are used in molecular and nuclear physics, are known

to have internal or body-relative parts in addition to the more commonly known external or laboratory-

relative parts. This inside-and-out duality is a deep quantum mechanical result arising first in the

theory of quantum rotors by Casimir, but it also underlies Lorentz-Poincare symmetry that includes

locally rotating frames as well as translating ones.

Indeed, the full quantum theory of angular momentum has a built-in duality that is as

fundamental as the left-and-right or bra-and-ket duality of the conjugate parts of Dirac’s elegant

quantum notation A B . The Wigner Dm,n
J –functions are quantum rotor wavefunctions Dm,n

J* ( )  that

have their external laboratory m-quantum numbers on the left and their internal or body n-quantum

numbers on the right. Their J-multiplicity is thus (2J+1)-squared and not simply the (2J+1) so familiar

in elementary Schrodinger quantum theory of atomic angular momentum.

It took many years for classical physics to fully accept Einstein’s translational relativity

principles. Perhaps, if the wave nature of quantum physics had already been established, the relativistic

axioms would have been seen as an immediate consequence of wave interference. Indeed, these two

subjects are, perhaps, too closely related for that to have happened.

Now quantum theory demands a more general kind of relativity involving rotation and other

accelerations that is a step beyond the special relativity of constant velocity. This brings up a quite

controversial area first explored by Ernst Mach, the originator of Mach’s Principle. Mach made the

seemingly impossible proposal that centrifugal forces, the kind physicists assign the label ficticious

force, are somehow due to their relativity to all matter in the universe.

Mach’s idea may sound silly, but a kind of quantum Mach’s Principle is needed to understand

spectra and dynamics of quantum rotor D
m ,n
J waves even in the non-relativistic limit. We are unaware of

any fully relativistic quantum treatment of such systems, and it is not clear what if anything would be

the cosmological implication of such a grand relativistic quantum wave mechanics. Nevertheless, it

seems that the dual 4-by-4 wave-anti-wave space of Dirac is one of the first to re-examine.

Physics is still at a stage where large-scale phenomena use Newton-Einstein particle-in-

manifold theory while small-scale phenomena employ Planck-DeBroglie-Schrodinger wave theory.

However, both employ some form of space and time coordinates. In this they share an enigma whose

existence is largely unquestioned. Supposed invariance to reference frame definition is taken to mean

that underlying frames don’t matter.
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That leaves our fundamental metrology in a dysfunctional dysphoria of an ignored spouse,

indispensable, but having only marginal identity. If Evenson and Einstein have taught us anything, it is

that this has to be a mistake. Frames do matter! The results of Dirac and many others have shown they

make matter and indeed are our matter.
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Figure Captions
Fig. 1. Comparison of wave archetypes and related axioms of relativity.

(a) Pulse Wave (PW) peaks locate where a wave is. Their speed is c for all observers.

(b) Continuous Wave (CW) zeros locate where it is not. Their speed is c for all colors (or observers.)

Fig. 2. Pulse Wave (PW) as a sum of 12 Fourier CW’s (a) PW parts: real Re , imaginary Im , and magnitude | |.

(b) CW phasor clocks plot real vs. imaginary parts of wave amplitude  .

Fig. 3. Wave addition of counter propagating Fourier components.

(a) 2-PW Sum has binary sum has 4 values (0,0), (0,1), (1,0), (1,1) and diamond grid of peak paths on a plane of zeros.

(b) 2-CW Sum and interference has value continuum and square grid of zeros.

Fig. 4. “Ficticious” sources and their wave coordinate lattices in (a) Spacetime and (b) Per-spacetime.

CW lattices of phase-zero and group-node paths intermesh with PW lattices of “particle” or pulse wave paths.

Fig. 5. Co-propagating laser beams produce a collapsed wave lattice since all parts have same speed c.

Fig. 6. Laser lab view of 600Thz CW and PW light waves in per-space-time (a-b) and space-time (c-d).

Fig.7. Atom view of 600Thz CW and PW light waves in per-spacetime (a-b) and space-time (c-d) boosted to u=3c/5.

Fig. 8. Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

(c) In phasor-relative views either A or else B is fixed. An evolving sum-and-difference rectangle is

inscribed in the (dashed) circle of the phasor moving relative to the fixed one.

Fig. 9. Doppler shift b-matrix for a linear array of variously moving receiver-sources.

Fig. 10. (a) Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Fig. 10. (b) Geometry for the CW wave coordinate axes in Fig. 7.

Fig. 11. (a) Horizontal G-hyperbolas for proper frequency B=v and 2B and vertical P-hyperbolas for proper wavevector k.

(b) Tangents for G-curves are loci for P-curves, and vice-versa.

Fig. 12. Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view.

Fig. 13. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian.

Fig. 14. “True” paths carry extreme phase and fastest phase clocks. Light-cone has only stopped clocks.

Fig. 15. Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.

Fig. 16. Trigonometric geometry (a) Unit circular area =0.86. (b) Unit hyperbolic area =0.99.

Fig. 17. Relativistic wave mechanics geometry. (a) Overview. (b) Details of contact transform tangents.

Fig. 18. Monochromatic (1-frequency) 2-CW wave space-time patterns.

Fig. 19. Dichromatic (2-frequency) 2-CW wave space-time patterns.

Fig. 20. (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 18. (h-i) Kepler anomalies.

Fig. 21. Cavity 2-CW modes. (a) Invariant “mass” hyperbolas. (b) COM frame. (c) ISOC frame.

Fig. 22. Optical cavity energy hyperbolas for mode number n=1-3 and photon number Nn=0, 1, 2,....

Fig. 23. Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).

Fig. 24. Optical cavity model of (a) Emission, (b) Absorption, and (c) Compton scattering

Fig. 25. Compton scattering. (a) Vector sums on mass hyperbolas of low  , medium m , and high h.

(b-c) Feynman graphs. (d) Center of Momentum (COM) vector sums. (e-f) COM Feynman graphs.

Fig. 26. Compton nets are congruent Compton staircases of transitions. (a) f=2:1 (b) f= 2 :1.

Fig. 27. Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g.

Fig. 28. Accelerated reference frames and their trajectories painted by e
±

-chirped coherent light.

Fig. 29. Dirac matter-antimatter dispersion relations and diagrams of pair-creation-destruction processes.
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-- The Purest Light and a Resonance Hero – Ken Evenson (1932-2002) --
When travelers punch up their GPS coordinates they owe a debt of gratitude to an under sung

hero who, alongside his colleagues and students, often toiled 18 hour days deep inside a laser

laboratory lit only by the purest light in the universe.

Ken was an “Indiana Jones” of modern physics. While he may never have been called

“Montana Ken,” such a name would describe a real life hero from Bozeman, Montana, whose

extraordinary accomplishments in many ways surpass the fictional characters in cinematic thrillers like

Raiders of the Lost Arc.

Indeed, there were some exciting real life moments shared by his wife Vera, one together with

Ken in a canoe literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such

outdoor exploits, of which Ken had many, pale in the light of an in-the-lab brilliance and courage that

profoundly enriched the world.

Ken is one of few researchers and perhaps the only physicist to be twice listed in the Guinness

Book of Records. The listings are not for jungle exploits but for his lab’s highest frequency

measurement and for a speed of light determination that made c many times more precise due to his

lab’s pioneering work with John Hall in laser resonance and metrology
†
.

The meter-kilogram-second (mks) system of units underwent a redefinition largely because of

these efforts. Thereafter, the speed of light c was set to 299,792,458ms
-1

. The meter was defined in

terms of c, instead of the other way around since his time precision had so far trumped that for

distance. Without such resonance precision, the Global Positioning System (GPS), the first large-scale

wave space-time coordinate system, would not be possible.

Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories

in the National Bureau of Standards (now the National Institute of Standards and Technology or NIST)

are legendary as are his railings against boneheaded administrators who seemed bent on thwarting his

best efforts. Undaunted, Ken’s lab painstakingly exploited the resonance properties of metal-insulator

diodes, and succeeded in literally counting the waves of near-infrared radiation and eventually visible

light itself.

Those who knew Ken miss him terribly. But, his indelible legacy resonates today as ultra-

precise atomic and molecular wave and pulse quantum optics continue to advance and provide

heretofore unimaginable capability. Our quality of life depends on their metrology through the Quality

and Finesse of the resonant oscillators that are the heartbeats of our technology.

Before being taken by Lou Gehrig’s disease, Ken began ultra-precise laser spectroscopy of

unusual molecules such as HO2, the radical cousin of the more common H2O. Like Ken, such radical

molecules affect us as much or more than better known ones. But also like Ken, they toil in obscurity,

illuminated only by the purest light in the universe.

In 2005 the Nobel Prize in physics was awarded to Glauber, Hall, and Hensch
††

 for laser optics

and metrology.

† K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L. Hall,

Phys. Rev. Letters 29, 1346(1972).

†† The Nobel Prize in Physics, 2005. http://nobelprize.org/

hysics, 2005. http://nobelprize.org/
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